Supporting Information

Tröger's base-containing fluorenone organic polymer for discriminative fluorescence sensing of sulfamethazine antibiotic at ppb level in the water medium

Ananthu Shanmughan, Mini Ajith Nithasha, Binduja Mohan, Deivasigamani Umadevi,* and Sankarasekaran Shanmugaraju*

Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad-678557, Kerala, India. E-mail: shanmugam@iitpkd.ac.in (S.S): umadevi@iitpkd.ac.in (D.U)

Fig. S1. Thermogravimetric analysis of as-synthesized TB-FL-CP was measured under N₂.

Fig. S2. The powder X-ray diffraction pattern of as-synthesized TB-FL-CP.

Fig. S3. The N₂ adsorption-desorption isotherm was measured at 77 K for TB-FL-CP.

Fig. S4. The observed changes in fluorescence emission intensity of **TB-FL-COP** at different concentrations of SMZ antibiotics were recorded in a PBS buffer medium.

Fig. S5. The changes in electronic absorption spectra for **TB-FL-CP** at different concentrations of SMZ at recorded at room temperature.

Fig. S6. The time-dependent fluorescence emission study of **TB-FL-COP** before and after the addition of different concentrations of SMZ antibiotics in water.

Fig. S7. The fluorescence emission for **TB-FL-CP was** recorded at different pH of the medium and observed fluorescence quenching after the addition of SMZ antibiotics.

Fig. S8. The changes in fluorescence emission intensity of **TB-FL-COP** at different concentrations of SMZ antibiotics were measured in pond water collected from Ahalia Campus, Palakkad.

S. No.	Antibiotics	Structure of Antibiotics	Quenching constant (K_{SV})
1	Furazolidone		$4.9 \times 10^3 \text{ M}^{-1}$
2	Nitrofurazone	02N 0 N NH NH2	$4.1 \times 10^4 \text{ M}^{-1}$
3	Chloramphenicol		$2.5 imes 10^4 \mathrm{M^{-1}}$
4	Dimetridazole		$5.6 imes 10^3 \ { m M}^{-1}$
5	Nitrofurantoin	O ₂ N O NH O NH	$2.6 \times 10^4 \text{ M}^{-1}$
6	Sulfadiazine	N O NH2	$4.8 imes 10^4 \ { m M}^{-1}$
7	Sulfamethazine	N O NH2	$1.2 imes 10^6 \ \mathrm{M}^{-1}$

Table S1. The structure and calculated K_{SV} value for different antibiotics.

Compounds	HOMO (eV)	LUMO (eV)
TB-FL-COP	-5.17	-1.04
SMZ	-6.29	-1.32
NFZ	-6.74	-3.11
SDZ	-6.35	-1.61
CRP	-7.86	-3.00
FZD	-6.86	-3.21
DMZ	-7.30	-2.76
FLP	-7.35	-4.10

Table S2. The calculated HOMO and LUMO energies for TB-FL-COP and various antibiotics.

Table S3. Fluorescence sensing properties of various senors system reported todate for SMZ.

Detection Method and Materials	LOD	[Ref.]
HPLC	3 ng mL ⁻¹	[1]
Fluorometry	10 ng mL ⁻¹	[2]
Capillary electrophoresis	1.1 ng mL ⁻¹	[3]
Fluorometric and chirality aptasensing	$0.02/0.75 \text{ ng mL}^{-1}$	[4]
Molecularly imprinted polymer on upconverting nanoparticles fluorescence sensing	34 ng mL ⁻¹	[5]
Lateral flow immunoassay based on dual spectral-overlapped fluorescence quenching of polydopamine nanospheres	0.043 and 0.5 ng/mL	[6]
Supramolecular Cd(II)-Coordination Polymer as a Luminescent Sensor	1.05 ppm	[7]
Aptamer-based fluorometric sulfamethazine assay based on the use of graphene oxide quantum dots	5 pg·mL- ¹	[8]
Graphitic Carbon Nitride Nanosheets Decorated with Strontium Tungstate Nanospheres as an Electrochemical Transducer	0.0059 μΜ	[9]
Lanthanide Organic Framework	0.6554 μM	[10]
A fluorescence sensor probe based on porous carbon, molecularly imprinted polymer and graphene quantum dots	0.03 μg L ⁻¹	[11]

Chart 1: Evolution of the proposed work described herein from molecular design to programmable outcome to testing and devices.

Reference

- [1] K.-M. Song, E. Jeong, W. Jeon, H. Jo, and C. Ban, *Biosens. Bioelectron*. 2012, **33**, 113–119.
- [2] D. Peng, Z. Li, Y. Wang, Z. Liu, F. Sheng, and Z. Yuan, J. Chromatogr. A. 2017, 1506, 9– 17.
- [3] C. Chen, X. Zhang, Z. Long, J. Zhang, and C. Zheng, *Microchim. Acta*. 2012, **178**, 293–299.
- [4] Z. Wu, and B. Cui, *Microchim. Acta.* 2019, **186**, 555.
- [5] J. Tian, J. Bai, Y. Peng, Z. Qie, Y. Zhao, B. Ning, D. Xiao, and Z. Gao, *Analyst.* 2015, 140, 5301–5307.
- [6] Z. Wang, K. Xing, N. Ding, S. Wang, G. Zhang, and W. Lai, J. Hazard. Mater. 2022, 423, 127204.
- [7] C.C. Shi, L. Zhao, X. Jia-Jia, L. Lu, A. Singh, O. Prakash, and A. Kumar, J. Inorg. Organomet. Polym. Mater. 2022, **32** 4627–4636.
- [8] Y. He, B. Zhang, and Z. Fan, *Microchim. Acta*. 2018, **185**, 163.
- M. Govindaraj, J. Rajendran, P. K. U. Ganesh, M. K. Muthukumaran, B. Jayaraman, and J. A. Selvi, ACS Appl. Nano Mater. 2022, 6, 930–945.
- [10] K. Ren, S.H. Wu, X.F. Guo, and H. Wang, *Inorg. Chem.* 2019, 58, 4223–4229.
- [11] A. Pongprom, N. Chansud, and O. Bunkoed, J. Photochem. Photobiol. A Chem. 2022, 427, 113812.