Protecting group-free introduction of amino acids to polymers through the aza-Michael

reaction

Guanhua Lu and Michael A. Brook*

Electronic Supporting Information

Table of Contents

SYNTHESIS OF CHAAILS (CHOLINE AMINO ACID IONIC LIQUIDS)	4
CHAAIL AND ACRYLATES AQUEOUS NMR KINETIC STUDIES	8
CHAAIL AND ACRYLATE SOLVENT FREE REACTIONS	
REACTION QUENCHING AND EFFECT OF BASE ON AZA-MICHAEL REACTIVITY	23
CHAAIL REACTIVITY WITH PEG	27
CHAAIL REACTIVITY WITH SILICONES	

Tables

7
8
23
23
27

Figures

FIGURE S1. ¹ H NMR OF CHASPIL
FIGURE S2. ¹ H NMR OF CHLEUIL
FIGURE S3. ¹ H NMR OF CHPHEIL
FIGURE S4. ¹ H NMR OF CHSERIL
FIGURE S5. ¹ H NMR OF CHLYSIL
FIGURE S6. KINETIC MONITORING SHOWING DATA OF THE NORMALIZED CONVERSION WHICH WAS REPRESENTED BY
THE % CONSUMPTION OF ACRYLATE PROTON SIGNALS BY NMR A) CHAAILS WITH EA OVER 12 HOURS
PLOTTING MICHAEL PRODUCT CONVERSION AND HYDROLYSIS PRODUCT CONVERSIONS. B) CHAAILS WITH
HEA OVER 12 HOURS PLOTTING MICHAEL PRODUCT CONVERSION AND HYDROLYSIS PRODUCT CONVERSIONS. C)
KINETIC MONITORING OF LINEAR REGIONS AT 0-20 MINS OF MICHAEL PRODUCTION CONVERSION FOR CHAAILS
WITH EA AND HEA. SLOPES OF THE BEST FIT LINES FOR EACH CURVE WERE USED AS INITIAL RATES OF
REACTIONS. D) KINETIC MONITORING OF LINEAR REGIONS AT $0-20$ mins of hydrolysis production
CONVERSION FOR CHAAILS WITH EA AND HEA. SLOPES OF THE BEST FIT LINES FOR EACH CURVE WERE USED
AS INITIAL RATES OF REACTIONS
FIGURE S7. ¹ H NMR STACKED PLOTS OF REACTION MONITORING OF CHASPIL AND EA IN D ₂ O, AT 30MIN, 1H, 2H, 4H,
12h, 24h from bottom to top
FIGURE S8. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHASPIL AND HEA IN D ₂ O, AT 30MIN, 1H, 2H,
4h, 12h, 24h from bottom to top10
FIGURE S9. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLEUIL AND EA IN D ₂ O, AT 30MIN, 1H, 2H,
4h, 12h, 24h from bottom to top11
FIGURE S10. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLEUIL AND HEA IN D ₂ O, AT 30MIN, 1H, 2H,
4h, 12h, 24h from bottom to top11
FIGURE S11. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLYSIL AND EA IN D ₂ O, AT 30MIN, 1H, 2H,
4h, 12h, 24h from bottom to top 12
FIGURE S12. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLYSIL AND HEA IN D ₂ O, AT 30MIN, 1H, 2H,
4h, 12h, 24h from bottom to top12
Figure S13. ¹ H NMR stacked plots for reaction monitoring of ChPheIL and EA in D_2O , at 30min, 1H, 2H,
4н, 12н from bottom to top 13

FIGURE S14. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHPHEIL AND HEA IN D ₂ O, AT 30MIN, 1H, 2H, 4U, 12U, 24U EROM POTTON TO TOP
4H, 12H, 24H FROM BOTTOM TO TOP
FIGURE S15. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHSERIL AND EA IN D ₂ O, AT 30MIN, 1H, 2H, 4H, 12H, 24H EROM POTTOM TO TOP
FIGURE S16 ¹ H NMR STACKED DLOTS FOR DEACTION MONITORING OF CUSEDIL AND HEA IN D-O AT 30MIN 14 24
AU 120 240 EDOM DOTTOM TO TOP
FIGURE S17 JUNING STACKED DI OTS FOR DEL CTION MONITORDIS OF CUASELLAND EA MEAT AT 20 MIN AND 24M
FIGURE ST /. "H NIVIR STACKED PLOTS FOR REACTION MONITORING OF CHASPIL AND EA NEAT, AT 30MIN AND 24H
FROM BOTTOM TO TOP.
FIGURE S18. 'H NMR STACKED PLOTS FOR REACTION MONITORING OF CHASPIL AND HEA NEAT, AT 30MIN AND 24H
FROM BOTTOM TO TOP.
FIGURE S19. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLEUIL AND EA NEAT, AT 30MIN, 1H, 2H,
4H, 24H FROM BOTTOM TO TOP. THE SPECTRAL WINDOW IS SCALED TO THE HEIGHT OF CHOLINE PEAK AT ~3.5
PPM FOR BETTER RELATIVE COMPARISON BETWEEN DIFFERENT TIME POINTS
FIGURE S20 'H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLEUIL AND HEA NEAT, AT 30MIN, 1H, 2H,
4H, 24H FROM BOTTOM TO TOP. THE SPECTRAL WINDOW IS SCALED TO THE HEIGHT OF CHOLINE PEAK AT ~3.5
PPM FOR BETTER RELATIVE COMPARISON BETWEEN DIFFERENT TIME POINTS
FIGURE S21. 'H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLYSIL AND EA NEAT, AT 30MIN, 1H, 2H, 4H,
12H, 24H FROM BOTTOM TO TOP. THE SPECTRAL WINDOW IS SCALED TO THE HEIGHT OF CHOLINE PEAK AT ~3.5
PPM FOR BETTER RELATIVE COMPARISON BETWEEN DIFFERENT TIME POINTS.
FIGURE S22. 'H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLYSIL AND HEA NEAT, AT 30MIN, 1H, 2H,
4H, 12H, 24H FROM BOTTOM TO TOP. 1HE SPECTRAL WINDOW IS SCALED TO THE HEIGHT OF CHOLINE PEAK AT
~3.5 PPM FOR BETTER RELATIVE COMPARISON BETWEEN DIFFERENT TIME POINTS
FIGURE S23. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHPHEIL AND EA NEAT, AT 30MIN, 1H, 2H, 6H,
24H FROM BOTTOM TO TOP. THE SPECTRAL WINDOW IS SCALED TO THE HEIGHT OF CHOLINE PEAK AT \sim 3.5 PPM
FOR BETTER RELATIVE COMPARISON BETWEEN DIFFERENT TIME POINTS. IT IS NOTED THAT THE MIXTURE WAS
INHOMOGENEOUS AND LIQUID SAMPLE WAS NOT ABLE TO BE COLLECTED UNIFORMLY AT DIFFERENT TIME
POINTS
FIGURE S24. 'H NMR STACKED PLOTS FOR REACTION MONITORING OF CHPHEIL AND HEA NEAT, AT 30MIN, 1H, 2H,
6H, 24H FROM BOTTOM TO TOP. THE SPECTRAL WINDOW IS SCALED TO THE HEIGHT OF CHOLINE PEAK AT ~3.5
PPM FOR BETTER RELATIVE COMPARISON BETWEEN DIFFERENT TIME POINTS
FIGURE S25. 'H NMR STACKED PLOTS FOR REACTION MONITORING OF CHSERIL AND EA NEAT, AT 30MIN, 1H, 7H,
24H FROM BOTTOM TO TOP. 1 HE SPECTRAL WINDOW IS SCALED TO THE HEIGHT OF CHOLINE PEAK AT ~3.5 PPM
FOR BETTER RELATIVE COMPARISON BETWEEN DIFFERENT TIME POINTS
FIGURE S26. 'H NMR STACKED PLOTS FOR REACTION MONITORING OF CHSERIL AND HEA NEAT, AT 30MIN, 1H, /H,
24H FROM BOTTOM TO TOP. THE SPECTRAL WINDOW IS SCALED TO THE HEIGHT OF CHOLINE PEAK AT ~3.5 PPM
FOR BETTER RELATIVE COMPARISON BETWEEN DIFFERENT TIME POINTS
FIGURE S2/. 'H NMR COMPARISON OF THE REACTION OF CHSERIL WITH HEA UNDER DRY NITROGEN VS
ATMOSPHERIC AIR. THE 24 HOURS CONVERSION RATE COMPARISON OF THE TWO REACTIONS WERE NEARLY
IDENTICAL, HOWEVER UNDER AIR, THE HYDROLYSIS PRODUCT WAS 1.6 TIMES HIGHER COMPARED TO THE
OUTCOME UNDER NITROGEN; EMPLOYING DRY CONDITIONS CAN REDUCE HYDROLYSIS PRODUCT
FIGURE S28. ASSIGNED ¹ H NMR OF CHSERIL AND HEA REACTION PRODUCT AFTER 24H
FIGURE S29 ASSIGNED ¹ H NMR OF CHPHEIL AND HEA REACTION PRODUCT AFTER 24 HOURS
FIGURE S30 ASSIGNED ¹ H NMR OF CHLEUIL AND HEA REACTION PRODUCT AFTER 24H
FIGURE S31 ASSIGNED ¹ H NMR OF CHLYSIL AND HEA REACTION PRODUCT AFTER 24H
FIGURE S32. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHASPIL WITH EA, BEFORE AND AFTER 1 EQ
CHOH ADDED AFTER 24 HOURS. FROM BOTTOM TO TOP FIRST TWO SPECTRA REPRESENT 5 MINS AND 24 H AFTER
REACTION BEFORE CHOH IS ADDED. 1EQ CHOH ADDED AT 24 HOURS TIMEPOINT, THEN THE TOP FOUR SPECTRA
REPRESENTING REACTION MONITORED AT 30 MIN, 1H, 4H, AND 24H AFTER THE ADDITION OF CHOH24
FIGURE S33. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHASPIL WITH EA, BEFORE AND AFTER 0.01
EQ CHOH ADDED AFTER 24 HOURS. FROM BOTTOM TO TOP FIRST TWO SPECTRA REPRESENT 5 MINS AND 24 H $$
AFTER REACTION BEFORE CHOH IS ADDED. 1EQ CHOH ADDED AT 24 hours timepoint, then the top four
SPECTRA REPRESENTING REACTION MONITORED AT 30 MIN, 1H, 4H, AND 24H AFTER THE ADDITION OF CHOH. 24
FIGURE S34. ¹ H NMR STACKING FOR REACTION MONITORING OF CHASPIL WITH HEA, BEFORE AND AFTER 1 EQ
CHOH ADDED AFTER 24 HOURS. FROM BOTTOM TO TOP FIRST TWO SPECTRA REPRESENT 5 MINS AND 24 H AFTER

REACTION BEFORE CHOH IS ADDED. 1EQ CHOH ADDED AT 24 HOURS TIMEPOINT, THEN THE TOP FOUR SPECTRA FIGURE S35. ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHASPIL WITH HEA, BEFORE AND AFTER 0.01 EQ CHOH ADDED AFTER 24 HOURS. FROM BOTTOM TO TOP FIRST TWO SPECTRA REPRESENT 5 MINS AND 24 H AFTER REACTION BEFORE CHOH IS ADDED. 1EQ CHOH ADDED AT 24 HOURS TIMEPOINT, THEN THE TOP THREE SPECTRA REPRESENTING REACTION MONITORED AT 1H, 4H, AND 24H AFTER THE ADDITION OF CHOH......25 FIGURE S36. ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHPHEIL WITH HEA. FROM BOTTOM TO TOP, IT IS SHOWN THE REACTION WAS LET REACTED AND MONITORED AT 30 MIN, 1H AND 2H (BOTTOM THREE), THE REACTION MIXTURE WAS THEN QUENCHED WITH 1 EQ ACOH AND PRECIPITATE FORMED WAS THEN REMOVED FIGURE S37. ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHPHEIL WITH EA. FROM BOTTOM TO TOP, IT IS SHOWN THE REACTION WAS LET REACTED AND MONITORED AT 30 MIN, 1H AND 2H (BOTTOM THREE), THE REACTION MIXTURE WAS THEN QUENCHED WITH 1 EQ ACOH AND PRECIPITATE FORMED WAS THEN REMOVED FIGURE S38. ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHASPIL WITH PEGACR, FROM BOTTOM TO TOP, REACTION AT 1H, 4H, 12H, 24H. THE SPECTRAL WINDOW IS SCALED TO THE CHOLINE PEAK AT ~4 PPM FOR BETTER RELATIVE COMPARISON BETWEEN DIFFERENT TIME POINTS. THE MIXTURE WAS INHOMOGENEOUS, FIGURE S39. A) ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF FOR CHLEUIL WITH PEGACR, FROM BOTTOM TO TOP, REACTION AT 1H, 4H, 12H, 24H. B) ZOOM-IN IMAGE OF THE ACRYLATE DEPLETION TREND OVER TIME AROUND 6.38 - 6.46 PPM. The spectral window is scaled to the Choline peak at ~4 PPM for FIGURE S40. A) ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHPHEIL WITH PEGACR, FROM BOTTOM TO TOP, REACTION AT 1H, 4H, 12H, 24H. B) ZOOM-IN IMAGE OF ACRYLATE DEPLETION TREND OVER TIME around 6.38 - 6.46 ppm. The spectral window is scaled to the Choline peak at ~4 ppm for better FIGURE S41. A) ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHSERIL WITH PEGACR, FROM BOTTOM TO TOP, REACTION AT 1H, 4H, 12H, 24H. B) ZOOM-IN IMAGE OF ACRYLATE DEPLETION TREND OVER TIME around 6.38 - 6.46 ppm. The spectral window is scaled to the Choline peak at ~4 ppm for better FIGURE S42. A) ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLYSIL WITH PEGACR, FROM BOTTOM TO TOP, REACTION AT 1H, 4H, 12H. B) ZOOM-IN IMAGE OF ACRYLATE DEPLETION TREND OVER TIME AROUND 5.7 -6.4 ppm. The spectral window is scaled to the Choline peak at \sim 4 ppm for better relative FIGURE S43. ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHPHEIL WITH OHGLYACR AT 1H AND 24 FIGURE S44. ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLYSIL WITH OHGLYACR AT 1H AND 24 FIGURE S45. ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLEUIL WITH OHGLYACR AT 1H AND 24 FIGURE S46. ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHSERIL WITH OHGLYACR AT 1H AND 24 FIGURE S47. ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHASPIL WITH OHGLYACR AT 1H AND 24 FIGURE S48. ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHASPIL AND HODI9 NEAT, AT 30MIN, 1H, 14H, 24H from bottom to top. The spectral window is scaled to the height of choline peak at \sim 3.5 FIGURE S49. ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLEUIL AND HODI9 NEAT, AT 30MIN, 1H, 14H, 24H from bottom to top. The spectral window is scaled to the height of choline peak at \sim 3.5 FIGURE S50. ¹H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLYSIL AND HODI9 NEAT, AT 30MIN, 1H, 14H, 24H FROM BOTTOM TO TOP. THE SPECTRAL WINDOW IS SCALED TO THE HEIGHT OF CHOLINE PEAK AT

FIGURE S51. ¹ H NMR STACKING FOR REACTION MONITORING OF CHPHEIL AND HODI9 NEAT, AT 30MIN, 1H, 14H,	
24H FROM BOTTOM TO TOP. THE SPECTRAL WINDOW IS SCALED TO THE HEIGHT OF CHOLINE PEAK AT \sim 4 PPM I	FOR
BETTER RELATIVE COMPARISON BETWEEN DIFFERENT TIME POINTS	. 35
FIGURE S52. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHSERIL AND HOD19 NEAT, AT 30MIN, 1H,	,
14h, 24h from bottom to top. The spectral window is scaled to the ethylene peak at ~ 0.5 ppm foi	R
BETTER RELATIVE COMPARISON BETWEEN DIFFERENT TIME POINTS	. 36
Figure S53. $^1\!H$ NMR stacked plots for reaction monitoring of ChAspIL and D110 neat, at 1h, and 24h	
FROM BOTTOM TO TOP	. 37
FIGURE S54. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLEUIL AND D110 NEAT AT 1H AND 24H	
FROM BOTTOM TO TOP	. 37
FIGURE S55. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHLYSIL AND D110 NEAT AT 1H AND 24H	
FROM BOTTOM TO TOP	. 38
FIGURE S56. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHSERIL AND D110 AT 1H AND 24H FROM	
ВОТТОМ ТО ТОР	. 39
FIGURE S57. ¹ H NMR STACKED PLOTS FOR REACTION MONITORING OF CHPHEIL AND D110 NEAT AT 1H AND 24H	
FROM BOTTOM TO TOP	.40

Synthesis of ChAAILs (Choline Amino Acid Ionic Liquids)

Figure S3. ¹H NMR of ChPheIL.

Figure S4. ¹H NMR of ChSerIL.

Amino acid	Mole AA	Choline OH	Temperature	Water (mL)	Reaction
	(mmol)	(mmol)	(°C)		time (h)
Asp	15.1	13.6	50	40	72
Lys	13.7	12.4	50	40	72
Ser	19.1	17.2	50	40	72
Phe	12.1	10.9	50	40	72
Leu	15.3	13.8	50	40	72

Table S1. Ionic liquid synthesis conditions

ChAAILs	Acrylate	Solvent	Reaction	Total	Michael	Degradation
ChLysIL	EA	Water	30	100%	68%	32%
ChLysIL	HEA	Water	30	100%	40%	60%
ChLysIL	EA	Water	720	100%	17%	83%
ChLysIL	HEA	Water	720	100%	0%	100%
ChLvsIL	EA	Neat	30	97%	86%	10%
ChLvsIL	HEA	Neat	30	99%	59%	40%
ChLysIL	EA	Neat	1440	100%	89%	11%
ChLysIL	HEA	Neat	1440	99%	61%	39%
ChSerIL	EA	Water	30	70%	64%	6%
ChSerIL	HEA	Water	30	72%	57%	14%
ChSerIL	EA	Water	720	96%	51%	45%
ChSerIL	HEA	Water	720	91%	36%	54%
ChSerIL	EA	Neat	30	34%	31%	3%
ChSerIL	HEA	Neat	30	75%	56%	20%
ChSerIL	EA	Neat	1440	99%	87%	12%
ChSerIL	HEA	Neat	1440	97%	65%	33%
ChPheIL	EA	Water	30	64%	59%	4%
ChPheIL	HEA	Water	30	67%	58%	9%
ChPheIL	EA	Water	720	93%	45%	48%
ChPheIL	HEA	Water	720	83%	40%	44%
ChPheIL	EA	Neat	30	31%	23%	8%
ChPheIL	HEA	Neat	30	60%	55%	5%
ChPheIL	EA	Neat	1440	85%	71%	15%
ChPheIL	HEA	Neat	1440	83%	56%	27%
ChLeuIL	EA	Water	30	69%	64%	5%
ChLeuIL	HEA	Water	30	75%	62%	13%
ChLeuIL	EA	Water	720	98%	41%	57%
ChLeuIL	HEA	Water	720	86%	27%	59%
ChLeuIL	EA	Neat	30	48%	45%	3%
ChLeuIL	HEA	Neat	30	61%	51%	10%
ChLeuIL	EA	Neat	1440	100%	96%	4%
ChLeuIL	HEA	Neat	1440	94%	75%	20%
ChAspIL	EA	Water	30	0%	0%	0%
ChAspIL	HEA	Water	30	0%	0%	0%
ChAspIL	EA	Water	720	0%	0%	0%
ChAspIL	HEA	Water	720	0%	0%	0%

ChAAIL and Acrylates Aqueous NMR Kinetic Studies Table S2. Reaction summary of ChAAILs with simple acylates.

ChAspIL	EA	Neat	30	0%	0%	0%
ChAspIL	HEA	Neat	30	0%	0%	0%
ChAspIL	EA	Neat	1440	0%	0%	0%
ChAspIL	HEA	Neat	1440	0%	0%	0%

*Total conversion is defined by the % of acrylate reacted, Michael or degradation product conversion is determined by the ratio of the relative products of Michael product and degradation product by NMR out of the total conversion.

Figure S6. Kinetic monitoring showing data of the normalized conversion which was represented by the % consumption of acrylate proton signals by NMR A) ChAAILs with EA over 12 hours plotting Michael product conversion and hydrolysis product conversions. B) ChAAILs with HEA over 12 hours plotting Michael product conversion and hydrolysis product conversions. C) Kinetic monitoring of linear regions at 0-20 mins of Michael production conversion for ChAAILs with EA and HEA. Slopes of the best fit lines for each curve were used as initial rates of reactions. D) Kinetic monitoring of linear regions at 0-20 mins of hydrolysis production conversion for ChAAILs with EA and HEA. Slopes of the best fit lines for each curve were used as initial rates of reactions.

Figure S7. ¹H NMR stacked plots of reaction monitoring of ChAspIL and EA in D_2O , at 30min, 1h, 2h, 4h, 12h, 24h from bottom to top.

Figure S8. ¹H NMR stacked plots for reaction monitoring of ChAspIL and HEA in D_2O , at 30min, 1h, 2h, 4h, 12h, 24h from bottom to top.

Figure S9. ¹H NMR stacked plots for reaction monitoring of ChLeuIL and EA in D_2O , at 30min, 1h, 2h, 4h, 12h, 24h from bottom to top.

Figure S10. ¹H NMR stacked plots for reaction monitoring of ChLeuIL and HEA in D_2O , at 30min, 1h, 2h, 4h, 12h, 24h from bottom to top.

Figure S11. ¹H NMR stacked plots for reaction monitoring of ChLysIL and EA in D_2O , at 30min, 1h, 2h, 4h, 12h, 24h from bottom to top.

Figure S12. ¹H NMR stacked plots for reaction monitoring of ChLysIL and HEA in D_2O , at 30min, 1h, 2h, 4h, 12h, 24h from bottom to top.

Figure S13. ¹H NMR stacked plots for reaction monitoring of ChPheIL and EA in D_2O , at 30min, 1h, 2h, 4h, 12h from bottom to top.

Figure S14. ¹H NMR stacked plots for reaction monitoring of ChPheIL and HEA in D_2O , at 30min, 1h, 2h, 4h, 12h, 24h from bottom to top.

Figure S15. ¹H NMR stacked plots for reaction monitoring of ChSerIL and EA in D_2O , at 30min, 1h, 2h, 4h, 12h, 24h from bottom to top.

Figure S16. ¹H NMR stacked plots for reaction monitoring of ChSerIL and HEA in D 30min, 1h, 2h, 4h, 12h, 24h from bottom to top.

ChAAIL and Acrylate Solvent Free Reactions

Figure S17. 1 H NMR stacked plots for reaction monitoring of ChAspIL and EA neat, at 30min and 24h from bottom to top.

and 24h from bottom to top.

Figure S19. ¹H NMR stacked plots for reaction monitoring of ChLeuIL and EA neat, at 30min, 1h, 2h, 4h, 24h from bottom to top. The spectral window is scaled to the height of choline peak at ~3.5 ppm for better relative comparison between different time points.

Figure S20 ¹H NMR stacked plots for reaction monitoring of ChLeuIL and HEA neat, at 30min, 1h, 2h, 4h, 24h from bottom to top. The spectral window is scaled to the height of choline peak at ~3.5 ppm for better relative comparison between different time points.

Figure S21. ¹H NMR stacked plots for reaction monitoring of ChLysIL and EA neat, at 30min, 1h, 2h, 4h, 12h, 24h from bottom to top. The spectral window is scaled to the height of choline peak at ~3.5 ppm for better relative comparison between different time points.

Figure S22. ¹H NMR stacked plots for reaction monitoring of ChLysIL and HEA neat, at 30min, 1h, 2h, 4h, 12h, 24h from bottom to top. The spectral window is scaled to the height of choline peak at ~3.5 ppm for better relative comparison between different time points.

Figure S23. ¹H NMR stacked plots for reaction monitoring of ChPheIL and EA neat, at 30min, 1h, 2h, 6h, 24h from bottom to top. The spectral window is scaled to the height of choline peak at ~3.5 ppm for better relative comparison between different time points. It is noted that the mixture was inhomogeneous and liquid sample was not able to be collected uniformly at different time points.

Figure S24. ¹H NMR stacked plots for reaction monitoring of ChPheIL and HEA neat, at 30min, 1h, 2h, 6h, 24h from bottom to top. The spectral window is scaled to the height of choline peak at ~3.5 ppm for better relative comparison between different time points.

Figure S25. ¹H NMR stacked plots for reaction monitoring of ChSerIL and EA neat, at 30min, 1h, 7h, 24h from bottom to top. The spectral window is scaled to the height of choline peak at \sim 3.5 ppm for better relative comparison between different time points.

Figure S26. ¹H NMR stacked plots for reaction monitoring of ChSerIL and HEA neat, at 30min, 1h, 7h, 24h from bottom to top. The spectral window is scaled to the height of choline peak at \sim 3.5 ppm for better relative comparison between different time points.

Experimental for reaction of ChSerIL with HEA under dry nitrogen

 \sim 2 g of ChSerIL was placed in a 25 mL round bottom flask and dried under reduced pressure at 60 degrees for 1 hour using rotary evaporator. 0.3 g (1.35 mmol) of the dried ChSerIL was then placed in a 15 mL glass vial (preheated at 80 °C overnight) equipped with stir bar and septum. 141 uL of HEA was then added to the vial and stirred for 24 hours under dried nitrogen. ¹H NMR was taken at end of reaction.

Figure S27. ¹H NMR comparison of the reaction of ChSerIL with HEA under dry nitrogen vs atmospheric air. The 24 hours conversion rate comparison of the two reactions were nearly identical, however under air, the hydrolysis product was 1.6 times higher compared to the outcome under nitrogen; employing dry conditions can reduce hydrolysis product.

Figure S28. Assigned ¹H NMR of ChSerIL and HEA reaction product after 24h.

Figure S29 Assigned ¹H NMR of ChPheIL and HEA reaction product after 24 hours.

Figure S30 Assigned ¹H NMR of ChLeuIL and HEA reaction product after 24h.

Figure S31 Assigned ¹H NMR of ChLysIL and HEA reaction product after 24h.

Reaction Quenching and Effect of Base on aza-Michael Reactivity

ChAAIL s	Acrylate	ChOH mole eq	24 h Conversion before ChOH	reaction time after ChOH	Conversion after ChOH
ChAspIL	EA	1	0%	30 min	94%
ChAspIL	EA	1	0%	24 h	100%
ChAspIL	EA	0.01	0%	30 min	24%
ChAspIL	EA	0.01	0%	24 h	81%
ChAspIL	HEA	1	0%	30 min	81%
ChAspIL	HEA	1	0%	24 h	100%
ChAspIL	HEA	0.01	0%	30 min	45%
ChAspIL	HEA	0.01	0%	24 h	69%

Table S3 Effect of base on aza-Michael reaction

Table S4 Effect of Acid quenching on aza-Michael reaction

ChAAIL	Acrylate	AcOH	2 h Conversion	reaction time after	Conversion after
S		mole eq	before ChOH	AcOH (h)	AcOH
ChPheIL	EA	1	71%	24	0%
ChPheIL	HEA	1	50%	24	0%

Figure S32. ¹H NMR stacked plots for reaction monitoring of ChAspIL with EA, before and after 1 eq ChOH added after 24 hours. From bottom to top first two spectra represent 5 mins and 24 h after reaction before ChOH is added. 1eq ChOH added at 24 hours timepoint, then the top four spectra representing reaction monitored at 30 min, 1h, 4h, and 24h after the addition of ChOH.

Figure S33. ¹H NMR stacked plots for reaction monitoring of ChAspIL with EA, before and after 0.01 eq ChOH added after 24 hours. From bottom to top first two spectra represent 5 mins and 24 h after reaction before ChOH is added. 1eq ChOH added at 24 hours timepoint, then the top four spectra representing reaction monitored at 30 min, 1h, 4h, and 24h after the addition of ChOH.

Figure S34. ¹H NMR stacking for reaction monitoring of ChAspIL with HEA, before and after 1 eq ChOH added after 24 hours. From bottom to top first two spectra represent 5 mins and 24 h after reaction before ChOH is added. 1eq ChOH added at 24 hours timepoint, then the top four spectra representing reaction monitored at 30 min, 1h, 4h, and 24h after the addition of ChOH.

Figure S35. ¹H NMR stacked plots for reaction monitoring of ChAspIL with HEA, before and after 0.01 eq ChOH added after 24 hours. From bottom to top first two spectra represent 5 mins and 24 hours timepoint, then the top three spectra representing reaction monitored at 1h, 4h, and 24h after the addition of ChOH.

Figure S36. ¹H NMR stacked plots for reaction monitoring of ChPheIL with HEA. From bottom to top, it is shown the reaction was let reacted and monitored at 30 min, 1h and 2h (bottom three), the reaction mixture was then quenched with 1 eq AcOH and precipitate formed was then removed before the reaction was monitored at 1h, 4h, and 24h after reaction work up (top three).

Figure S37. ¹H NMR stacked plots for reaction monitoring of ChPheIL with EA. From bottom to top, it is shown the reaction was let reacted and monitored at 30 min, 1h and 2h (bottom three), the reaction mixture was then quenched with 1 eq AcOH and precipitate formed was then removed before the reaction was monitored at 1h, 4h, and 24h after reaction work up (top three).

ChAAIL Reactivity with PEG

	PEG	Conversion (%) at		Silicones	Conversion	n at
		1 hour	24 hours		1 hour	24 hours
ChLeuIL	PEGACR	82		Di10	34	89
				HODi9	74	88
ChLysIL	PEGACR	97	99	Di10	26	99
	OHGlyACR	99	99	HODi9	88	99
ChPheIL	PEGACR	57	61	Di10	1	48
	OHGlyACR	24	83	HODi9	60	80
ChSerIL	PEGACR	23	75	Di10	5	26
	OHGlyACR	72	98	HODi9	67	88
ChAspIL				Di10	0	0
				HODi9	0	0

Table S5. Reaction summary of ChAAILs with polymer acrylates.

Figure S38. ¹H NMR stacked plots for reaction monitoring of ChAspIL with **PEGACR**, from bottom to top, reaction at 1h, 4h, 12h, 24h. The spectral window is scaled to the choline peak at ~4 ppm for better relative comparison between different time points. The mixture was inhomogeneous, therefore different aliquot had variations of amsount of acrylates.

Figure S39. A) ¹H NMR stacked plots for reaction monitoring of for ChLeuIL with **PEGACR**, from bottom to top, reaction at 1h, 4h, 12h, 24h. B) Zoom-in image of the acrylate depletion trend over time around 6.38 - 6.46 ppm. The spectral window is scaled to the Choline peak at ~4 ppm for better relative comparison between different time points.

Figure S40. A) ¹H NMR stacked plots for reaction monitoring of ChPheIL with **PEGACR**, from bottom to top, reaction at 1h, 4h, 12h, 24h. B) Zoom-in image of acrylate depletion trend over time around 6.38 - 6.46 ppm. The spectral window is scaled to the Choline peak at ~4 ppm for better relative comparison between different time points.

Figure S41. A) ¹H NMR stacked plots for reaction monitoring of ChSerIL with **PEGACR**, from bottom to top, reaction at 1h, 4h, 12h, 24h. B) Zoom-in image of acrylate depletion trend over time around 6.38 - 6.46 ppm. The spectral window is scaled to the Choline peak at ~4 ppm for better relative comparison between different time points.

Figure S42. A) ¹H NMR stacked plots for reaction monitoring of ChLysIL with **PEGACR**, from bottom to top, reaction at 1h, 4h, 12h. B) Zoom-in image of acrylate depletion trend over time around 5.7 - 6.4 ppm. The spectral window is scaled to the Choline peak at ~4 ppm for better relative comparison between different time points.

Figure S43. ¹H NMR stacked plots for reaction monitoring of ChPheIL with **OHGlyACR** at 1h and 24 hours.

31

Figure S45. ¹H NMR stacked plots for reaction monitoring of ChLeuIL with **OHGlyACR** at 1h and 24 hours.

Figure S46. ¹H NMR stacked plots for reaction monitoring of ChSerIL with **OHGlyACR** at 1h and 24 hours.

Figure S47. ¹H NMR stacked plots for reaction monitoring of ChAspIL with **OHGlyACR** at 1h and 24 hours.

Figure S48. ¹H NMR stacked plots for reaction monitoring of ChAspIL and **HODi9** neat, at 30min, 1h, 14h, 24h from bottom to top. The spectral window is scaled to the height of choline peak at ~3.5 ppm for better relative comparison between different time points.

Figure S49. ¹H NMR stacked plots for reaction monitoring of ChLeuIL and **HODi9** neat, at 30min, 1h, 14h, 24h from bottom to top. The spectral window is scaled to the height of choline peak at ~3.5 ppm for better relative comparison between different time points.

Figure S50. ¹H NMR stacked plots for reaction monitoring of ChLysIL and **HODi9** neat, at 30min, 1h, 14h, 24h from bottom to top. The spectral window is scaled to the height of choline peak at ~4ppm for better relative comparison between different time points.

Figure S51. ¹H NMR stacking for reaction monitoring of ChPheIL and **HODi9** neat, at 30min, 1h, 14h, 24h from bottom to top. The spectral window is scaled to the height of choline peak at ~4 ppm for better relative comparison between different time points.

Figure S52. ¹H NMR stacked plots for reaction monitoring of ChSerIL and **HODi9** neat, at 30min, 1h, 14h, 24h from bottom to top. The spectral window is scaled to the ethylene peak at \sim 0.5 ppm for better relative comparison between different time points.

Figure S53. ¹H NMR stacked plots for reaction monitoring of ChAspIL and **Di10** neat, at 1h, and 24h from bottom to top.

Figure S54. ¹H NMR stacked plots for reaction monitoring of ChLeuIL and **Di10** neat at 1h and 24h from bottom to top.

Figure S55. ¹H NMR stacked plots for reaction monitoring of ChLysIL and **Di10** neat at 1h and 24h from bottom to top.

from bottom to top.

Figure S57. ¹H NMR stacked plots for reaction monitoring of ChPheIL and **Di10** neat at 1h and 24h from bottom to top.