Supporting Information

Thermoresponsive Property of Poly(*N*,*N*-bis(2-ethoxyethyl)acrylamide) and Its Multi-Block Copolymers with Poly(*N*,*N*-dimethylacrylamide) Prepared by Hydrosilylation-Promoted Group Transfer Polymerization

Xiangming Fu,^a Yanqiu Wang,^a Liang Xu,^a Atsushi Narumi,^b Shin-ichiro Sato,^c

Xiaoran Yang,^a Xiande Shen,^{*,a,d} and Toyoji Kakuchi^{*,a,c,d}

^a Research Center for Polymer Materials, School of Materials Science and Engineering,

Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China

^b Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan,

Yonezawa, Yamagata 992-8510, Japan

^c Division of Applied Chemistry, Faculty of Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

^d Chongqing Research Institute, Changchun University of Science and Technology, No. 618
Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China

CORRESPONDING AUTHOR FOOTNOTE

Tel & Fax: +81-11-706-6602. E-mail: <u>kakuchi@eng.hokudai.ac.jp</u>

Contents

1. Monomer reactive ratio	1
2. $T_{\rm cp}$ of PMOEAm	2
3. ¹ H and ¹³ C NMR spectra	
Figure S1	3
Figures S2, S3, S4	4
Figures S5, S6	5
4. SEC traces for di-, tri-, and tetra-block copolymers	
Figure S7	6
Figure S8	7
Figure S9	8
Figure S10	9
Figure S11	10
5. UV-vis absorption spectra of Block copolymers at different temperatures	11
6. Distribution of hydrodynamic radii	12

1. Monomer reactivity ratio

The monomer reactivity ratios of r_{EOEAm} and r_{DMAm} were determined using the Kelen–Tüdös equation of $\eta = (r_{\text{EOEAm}} + r_{\text{DMAm}}/\alpha) - r_{\text{DMAm}}/\alpha)$, where η and ξ are mathematical functions of the comonomer molar fractions in the feed and in the copolymer, respectively: $\eta = G/(\alpha + F)$ and ξ $= F/(\alpha + F)$. Here, G = x(y - 1)/y and $F = x^2/y$ with $x = M_{\text{EOEAm}}/M_{\text{DMAm}}$ and $y = m_{\text{EOEAm}}/m_{\text{DMAm}}$. F_{EOEAm} and F_{DMAm} are the mole fractions of EOEAm and DMAm in the monomer feed, respectively, M_{EOEAm} and M_{DMAm} are the mole fractions of EOEAm and DMAm in the residual monomer mixture, respectively, and m_{EOEAm} and m_{DMAm} are the mole fractions of EOEAm and DMAm in the residual power mixture, respectively. The term $\alpha = \sqrt{F_m F_M}$ is a constant that is chosen appropriately to obtain a uniform spread of the data ($\alpha > 0$). F_m and F_M are the lowest and highest values obtained from the experimental data.

After terminating a random GTcoP of EOEAm and DMAm, remaining monomers and a resulting copolymer in a polymerization mixture were separated by dialysis against acetone. A mixture of residual monomers was purified using a short silica gel column, and $M_{\rm EOEAm}$ and $M_{\rm DMAm}$ were determined using the ¹H NMR spectrum of the monomer mixture. $m_{\rm EOEAm}$ and $m_{\rm DMAm}$ were determined using the ¹H NMR spectrum of the obtained copolymer. The monomer reactivity ratios $r_{\rm EOEAm}$ and $r_{\rm DMAm}$ were determined using the ¹H NMR spectrum of the obtained copolymer. The monomer reactivity ratios $r_{\rm EOEAm}$ and $r_{\rm DMAm}$ were determined using the ¹H NMR spectrum of the obtained copolymer. The monomer reactivity ratios $r_{\rm EOEAm}$ and $r_{\rm DMAm}$ were determined to be 0.66 and 15.83, respectively, from the least-squares method. The number-average sequence length of the EOEAm unit ($l_{\rm EOEAm}$) was determined as a parameter that reflects the isolation tendency of the EOEAm–EOEAm diad. The $l_{\rm EOEAm}$ was calculated from the monomer reactivity ratio of $l_{\rm EOEAm}$ using the equation $l_{\rm EOEAm} = 1 + r_{\rm EOEAm}[F_{\rm EOEAm}/(1 - F_{\rm EOEAm})]$.

$F_{\rm EOEAm}$	$M_{ m EOEAm}$ ^b	conv. %	m _{EOEAm} ^b	ξ	η	$l_{\rm EOEAm}$
0.3	0.36	0.25	0.08	0.23	-0.95	1.3
0.4	0.47	0.23	0.13	0.31	-0.76	1.4
0.5	0.55	0.19	0.18	0.36	-0.59	1.7
0.6	0.64	0.21	0.26	0.44	-0.40	2.0
0.7	0.76	0.20	0.39	0.57	-0.18	2.5
0.8	0.88	0.22	0.58	0.77	0.15	3.6

Table S1. Random group transfer copolymerization (GTcoP) of EOEAm and DMAm using Me_2EtSiH and $B(C_6F_5)_3$

^{*a*} $[SKA^{Et}]_0/[B(C_6F_5)_3]_0 = 1/0.2$; solvent, CH₂Cl₂; temperature, 25 °C. ^{*b*} Determined by ¹H NMR spectroscopy in CDCl₃.

Figure. The equation obtained by fitting ξ and η .

2. T_{cp} of PMOEAm.

The T_{cp} of PMOEAm_x prepare by the GTP of MOEAm with Me₂EtSiH using B(C₆F₅)₃: 56.5 °C for x = 25, 53.9 °C for x = 50, 51.2 °C for x = 75, 50.9 °C for x = 100, 50.5 °C for x = 150, 48.0 °C for x = 200.

3. ¹H and ¹³C NMR spectra.

Figure 1S. ¹H NMR spectra of a) EOEAm and b) PEOEAm and ¹³C NMR spectra of c) EOEAm and d) PEOEAm in CDCl₃.

Figure S2. ¹H NMR spectrm of a) PDMAm₅₀ and b) PEOAm₅₀-*b*-PDMAm₅₀

Figure S3. ¹H NMR spectrum of PDMAm₅₀-*b*-PEOEAm₅₀

Figure S4. ¹H NMR spectrum of PDMAm₂₅-*b*-PEOEAm₅₀-*b*-PDMAm₂₅

Figure S5. ¹H NMR spectrum of PEOEAm₂₅-*b*-PDMAm₅₀-*b*-PEOEAm₂₅

Figure S6. ¹H NMR spectrum of (PDMAm₂₅-*b*-PEOEAm₂₅)₂

4. Sec traces for di-, tri-, and tetra-block copolymers.

Figure S7. SEC traces of PEOEAm_x-*b*-PDMAm_y: (a) x/y = 40/10, (b) x/y = 35/15, (c) x/y = 30/20, (d) x/y = 25/25, (e) x/y = 20/30, and (f) x/y = 15/35 (runs 7 – 13, Table 2).

Figure S8. SEC traces of PDMAm_y-*b*-PEOEAm_x: (a) x/y = 30/70, (b) x/y = 40/60, (c) x/y = 50/50, (d) x/y = 60/40, (e) x/y = 70/30, (f) x/y = 80/20, (g) x/y = 90/10 (runs 14 – 20, Table 2).

Figure S9. SEC traces of PDMAm_y-*b*-PEOEAm_x-*b*-PDMAm_y (runs 21 – 27, Table 3).

Figure S10. SEC traces of PEOEAm_x-*b*-PDMAm_y-*b*-PEOEAm_x (runs 28 – 34, Table 3)

Figure S11. SEC traces of (PDMAm_y-*b*-PEOEAm_x)₂ (Table 4).

5. UV-vis absorption spectra of Block copolymers at different temperatures.

Figure S12. UV-vis absorption spectra of a) PEOEAm, b) $PDMAm_y$ -*b*-PEOEAm_x, c) PEOEAm_x-*b*-PDMAm_y, d) PEOEAm_x-*b*-PDMAm_y-*b*-PEOEAm_x, e) PDMAm_y-*b*-PEOEAm_x-*b*-PDMAm_y) in water (10 g L⁻¹) at different temperatures.

6. Distribution of hydrodynamic radii.

Figure S13. Distribution of hydrodynamic radii for a) and b) PDMAm₅₀-*b*-PEOEAm₅₀, c) and d) PEOEAm₅₀-*b*-PDMAm₅₀, e) and f) PDMAm₂₅-*b*-PEOEAm₅₀-*b*-PDMAm₂₅, g) and h) PEOEAm₂₅-*b*-PDMAm₅₀-*b*-PEOEAm₂₅, and i) and j) (PEOEAm₂₅-*b*-PDMAm₂₅)₂.