ELECTRONIC SUPPLEMENTARY INFORMATION

Highly differentiated multi stimuli-responsive fluorescence performance of tetraphenylethylene-containing styrene-maleic acid copolymers induced by macromolecular architecture control

Ranran Gao^a, Xiaoning Guo^a, Li Wang^{*a}, Wantai Yang^{*abc}

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

^b Beijing Engineering Research Center for the Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

^c Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing 100029, China

Figure. S2 ¹³C NMR spectra of TPE-4TTC in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical shift (ppm)

Figure. S4 ¹³C NMR spectra of VB-TTC in CDCl₃.

Figure. S5 ESI MS spectra of (a) TPE-TTC, (b) TPE-4TTC, (c) Bz-4TTC, (d) VB-TTC.

Figure. S6 GPC traces of (a) T-PSM, (b) PTSM, (c) T-(PSM)₄, (d) Bz-(PTSM)₄ and (e) VB-PTSM.

Figure. S7¹³C NMR spectra of (a) T-PSM, (b) T-(PSM)₄, (c) Bz-(PTSM)₄, and (d) VB-PTSM in CD₃COCD₃. The quaternary carbon (Ce) of styrene units resonates at 141.5-147.5 ppm in non-alternating and semi-alternating triads, which is not present in the above spectrum. The peak of Ce attributed to the alternating triad of MAH-St-MAH¹ at 137 ppm can be clearly seen.

Figure. S8 Potentiometric titration curves of (a) T-PSM, (b) T-(PSM)₄, (c) Bz-(PTSM)₄, and (d) VB-PTSM.

Determination of the amount of MAH unit in copolymer samples by potentiometric titration

With the continuous addition of 0.04 M HCl, two regions where pH declined suddenly appear on the potentiometric titration curves (Figure. S8). The two peaks in the dpH/dV curve show the two points with the fastest pH change during titration, which correspond to the two specific dissociation states of maleic acid groups. Therefore, the amount of HCl consumed between the two peaks corresponds to the amount of MAH unit contained in the copolymer samples.In Figure S8 (a), the $\Delta V_{HCl} = 0.74 \text{ mL}$, $n_{MAH} = \Delta V_{HCl} \times c_{HCl} = 29.6 \mu mol$.

	T-PSM	T-(PSM) ₄	Bz-(PTSM) ₄	VB-PTSM
m ^b /mg	6.90	7.34	6.98	6.91
MAH ^c /µmol	32.0	32.0	32.0	32.0
HCl ^d /µmol	29.6	32.0	29.2	32.0

Table S1 Results of potentiometric titration^a

^a The hydrolyzed copolymer stock solution (2 mL) was diluted with deionized water to 40 mL, then brought to high pH by the addition of 0.5 M NaOH. The pH values with the addition of small volumes of 0.04 M HCl were recorded on a potentiometric titrator.

^b Required mass of copolymer containing 32 µmol of MAH unit while assuming that the TPE-containing monomers and electron-rich monomers polymerized in alternating manner with MAH. Taking T-PSM as an example, the feeding ratio of T-PSM was [CTA]:[St]:[MAH]=1/40/40, and the molecular weight of T-PSM was $M_{n.th}$ = 8600 g/mol (Table 1). Therefore, the required mass of the T-PSM copolymer containing 32 µmol of MAH was calculated to be: $m = \frac{32 \,\mu \text{mol}}{40} \times M_{n,th} = 6.9 \text{ mg.}$

^c Calculated amount of MAH repeating unit while assuming that the TPE-containing monomers and St monomers polymerized in alternating manner with MAH.

^d The molar amount of HCl consumed by one carboxylic acid group in maleic anhydride in a potentiometric titration. This amount was close to the calculated molar amount of maleic anhydride (32 μ mol), indicating that TPE-containing monomers and electron-rich monomers are alternately polymerized with MAH.

Figure. S9 ¹H NMR spectra of (a) *h*T-PSM, (b) *h*PTSM, (c) *h*T-(PSM)₄, (d) *h*Bz-(PTSM)₄, and (e) *h*VB-PTSM in D₂O (pH = 12).

Figure. S10 FTIR spectra of the TPE-appended maleic anhydride copolymers and their

hydrolysates.

Figure. S11 UV-vis absorption spectra of *h*T-PSM, *h*PTSM, *h*T-(PSM)₄, *h*Bz-(PTSM)₄, and *h*VB-PTSM in water.

Figure. S12 PL spectra of *h*T-PSM (pH =2) and *h*PSM (pH =2 and 11, blank groups) in

B-R buffer solutions.

Figure. S13 PL intensity of (a) hT-PSM, (b) hPTSM, (c) hT-(PSM)₄, (d) hBz-(PTSM)₄, and

(e) hVB-PTSM in the B–R buffer solutions (pH = 3) with different TPE concentration. (f) Critical aggregation concentration of the five copolymers.

Figure. S14 Absolute fluorescence QYs (Φ) of the five copolymers at pH = 3 and 11. **Table S2.** Polymerization recipe, conversion, and GPC results of T-PSM with different targeted DP

ontra	[CTA]:[St]:	CTA	[M]/	Conv./	$M_{n.th} \\$	$M_{n.GPC} \\$	D^{e}
entry	[MAH]:[AIBN]	CIA	wt%	% ₀ ^a	(g/mol) ^b	(g/mol)	D
T-PSM-40	1:40:40:0.05	TPE-TTC	30	99.4	8600	12200	1.26
T-PSM-80	1:80:80:0.05	TPE-TTC	30	95.7	16100	18200	1.37
T-PSM-160	1:160:160:0.05	TPE-TTC	30	86.8	28600	31700	1.38
T-PSM-320	1:320:320:0.1	TPE-TTC	30	78.3	51000	54900	1.39

^a Measured by ¹H NMR.

^b $M_{n,th} = M_{w,CTA} + C \times \frac{M_{w,St} \times n_{St} + M_{w,MAH} \times n_{MAH}}{n_{CTA}}$

Table S3. Summary of the pH-responsive fluorescence performance of hT-PSM with

entry	$\mathrm{pH}_{50}{}^a$	$\mathrm{pH_0}^b$	dynamic range
hT-PSM-40	4.19	5.43	59
<i>h</i> T-PSM-80	4.39	5.48	108
<i>h</i> T-PSM-160	4.20	5.55	142
<i>h</i> T-PSM-320	4.36	5.54	133

different targeted DP

^{*a*} The pH value where half of the PL intensity enhancement was attained.

^b The pH value of the intersect of the fitted lines of the steeper and flatter (weak emission) parts in Figure S15 e.

Figure. S15 PL spectra of (a) *h*T-PSM-40, (b) *h*T-PSM-80, (c) *h*T-PSM-160, (d) *h*T-PSM-320 in the B–R buffer solutions of different pH. (e) Plots of I/I_0 vs pH. (f) Plots of PL intensity vs pH. [TPE] = 20 μ M; excitation wavelength: 320 nm; I_0 : the PL intensity of the corresponding copolymer in B–R buffer solutions at pH = 11.

Figure. S16 PL spectra of (a) *h*T-PSM, (b) *h*PTSM, (c) *h*T-(PSM)₄, (d) *h*Bz-(PTSM)₄, and (e) *h*VB-PTSM in HEPES buffer solutions (70 mM, pH = 7.4) at different [Ca²⁺]. [TPE] = 20 μ M. (f) *h*T-PSM ([Ca²⁺]=6.4 mM) and *h*PSM ([Ca²⁺]=6.4 mM and without Ca²⁺, blank groups) in HEPES buffer solutions (70 mM, pH = 7.4).

Determination of the apparent dissociation constant K_d .

By measuring the fluorescence intensity at different Ca^{2+} concentrations, the K_d can be obtained using the following Hill equation:

$$(I - I_{min})K_d + (I - I_{min})[Ca^{2+}]^n = (I_{max} - I_{min})[Ca^{2+}]^n$$
(Eq. S1)

I: fluorescence intensity

*I*_{max}: maximum fluorescence intensity

*I*_{min}: minimum fluorescence intensity

*K*_d: apparent dissociation constant

n: apparent Hill coefficient

Table S4. Fluorescence dynamic range and apparent dissociation constants K_d of hT-

entry	apparent K_{d} (mM)	$[Ca^{2+}]_{50}$ (mM) ^a	п	dynamic range
<i>h</i> T-PSM-40	3.40	1.79	1.96	33
<i>h</i> T-PSM-80	13.42	2.38	2.23	92
<i>h</i> T-PSM-160	72.51	2.92	3.41	189
<i>h</i> T-PSM-320	133.62	3.60	3.00	230

PSM with different targeted DP derived from the Ca²⁺ titration experiments

^{*a*} The [Ca²⁺] where half of the PL intensity enhancement was attained.

Figure. S17 PL spectra of (a) *h*T-PSM-40, (b) *h*T-PSM-80, (c) *h*T-PSM-160, (d) *h*T-PSM-320 in HEPES buffer solutions (70 mM, pH = 7.4) at different [Ca²⁺]. [TPE] = 20 μ M.

Figure. S18 The corresponding Hill plots of (a) *h*T-PSM-40, (b) *h*T-PSM-80, (c) *h*T-PSM-160, (d) *h*T-PSM-320 in HEPES buffer solutions (70 mM, pH = 7.4) at different [Ca²⁺]. (e) Plots of I/I_0 vs Ca²⁺. (f) Plots of PL intensity vs Ca²⁺. [TPE] = 20 μ M; I_0 : the PL intensity of the corresponding copolymer at [Ca²⁺] = 0.032 mM.

Figure. S19 I/I_0 of hT-PSM, hPTSM, hT-(PSM)_4, hBz-(PTSM)_4, and hVB-PTSM in HEPES buffer solutions (70 mM, pH = 7.4) at different [Ca²⁺]. [TPE] = 20 μ M. Inset: linear region of the binding isotherm of hT-PSM, hPTSM, hT-(PSM)_4, hBz-(PTSM)_4, and hVB-PTSM to Ca²⁺.

Table S5. Comparison of the performance of AIE-type fluorescent Ca²⁺ probes in the

Fluorescent probe structure	[AIE] (μM) ^a	[Ca ²⁺] (mM) ^b	dynamic range ^c	Linear range (mM) ^d	ref
	1	3	12	0-3.0	2
HOOC N COOH	1000	4.8	21	0.2–4.8	3
	1	1	5	0-0.1	4
	20	0.01	9	0-0.012	5
to to an to to an to to an to an t	19	5	68	0-2.0	6
	12	9	69	0-4.5	7
$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0.7	20	1.4	0-10	8
H () , , , , , , , , , , , , , , , , , ,	1.0	20	21	0-10	8
(0.9	20	7.1	0-10	8

literature and the TPE-containing maleic acid copolymers in our work

$c\left(0\right)\left(\begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	1.9	50	24	0-10	8
нову таку ту с с инз	20	6.4	15	0-3.2	9
	20	1.0	17	0-0.64	9
hT-PSM	20	6.4	33	0-3.2	
hPTSM	20	6.4	86	0-1.6	Thia
hT-(PSM) ₄	20	6.4	4	0-1.6	Inis
hBz-(PTSM) ₄	20	6.4	14	0-0.64	WOIK
hVB-PTSM	20	6.4	14	0-1.6	

^{*a*} Concentration of AIEgen in fluorescence tests.

^b Maximum Ca²⁺ concentration with monotonic fluorescence response.

^c Dynamic range at maximum Ca²⁺ concentration.

^d Ca²⁺ concentration range with linearly enhanced fluorescence intensity.

Figure. S20 PL spectra of *h*T-PSM in HEPES buffer solutions (70 mM, pH = 7.4) at different (a) $[Ca^{2+}]$, (b) $[Zn^{2+}]$, (c) $[Mg^{2+}]$, (d) $[K^+]$, (e) $[Li^+]$. (f) Hill plot of *h*T-PSM in Tris buffer solutions (70 mM, pH = 7.4) at different $[Zn^{2+}]$. (g) Plots of *I*/*I*₀ vs [metal ions]. (h) Plots of PL intensity vs [metal ions]. [TPE] = 20 μ M; *I*₀: the PL intensity of the corresponding copolymer at [metal ions] = 0.043 mM. Tris buffer solutions (70mM, pH = 7.4) was used in the case of Zn²⁺ because of its precipitation in HEPES buffer solution. **Table S6.** Fluorescence dynamic range and apparent dissociation constants *K*_d of the

<i>h</i> T-PSM	Apparent K_{d} (mM)	[Metal ions] ₅₀ (mM) ^a	п	Dynamic range
Ca^{2+}	3.40	1.75	1.96	33
Mg^{2+}	58.61	21.45	1.16	154
Zn^{2+}	1.35	0.54	1.95	62
\mathbf{K}^+	/	/	/	1.1
Li^+	/	/	/	1.1

^{*a*}The [Metal ions] where half of the PL intensity enhancement was attained.

Figure. S21 PL spectra of (a) *h*T-PSM, (b) *h*PTSM, (c) *h*T-(PSM)₄, (d) *h*Bz-(PTSM)₄, and (e) *h*VB-PTSM in HEPES buffer solutions (70 mM, pH = 7.4) at different [Mg²⁺]. (f) Plots of PL intensity vs Mg²⁺. [TPE] = 20 μ M.

Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2023

Figure 22. Hill plots of (a) *h*T-PSM, (b) *h*PTSM, (c) *h*T-(PSM)₄, (d) *h*Bz-(PTSM)₄, and (e) *h*VB-PTSM in HEPES buffer solutions (70 mM, pH = 7.4) at different [Mg²⁺]. (f) Plots of I/I_0 vs Mg²⁺. [TPE] = 20 μ M. I_0 : the PL intensity of the corresponding copolymer at [Mg²⁺] = 0.043mM.

Table S7. Fluorescence dynamic range and apparent dissociation constants K_d of the five maleic acid copolymers derived from the Mg²⁺ titration experiments

Entry	Apparent K_{d} (mM)	$[Mg^{2+}]_{50} (mM)^a$	n	Dynamic range
hT-PSM	58.61	21.45	1.16	154
hPTSM	6.30	10.04	0.76	44
hT-(PSM) ₄	2.80	1.17	1.04	5
hBz-(PTSM)4	4.66	6.02	0.89	19
<i>h</i> VB-PTSM	4.08	6.68	0.72	12

^{*a*}The [Mg²⁺] where half of the PL intensity enhancement was attained.

Figure. S23 PL spectra of (a) *h*T-PSM, (b) *h*PTSM, (c) *h*T-(PSM)₄, (d) *h*Bz-(PTSM)₄, and (e) *h*VB-PTSM in HEPES buffer solutions (70 mM, pH = 7.4) at different [BSA]. [TPE] = 2 μ M. (f) *h*T-PSM ([BSA]=500 mg/L) and *h*PSM ([BSA]=500 mg/L and without BSA, blank groups) in HEPES buffer solutions (70 mM, pH = 7.4).

Table S8. Fluorescence dynamic range and apparent dissociation constants K_d of hT-PSM with different targeted DP derived from the BSA titration experiments

entry	apparent K_d (mg/L)	[BSA] ₅₀ (mg/L) ^a	п	dynamic range
hT-PSM-40	85.66	38.36	1.20	114
<i>h</i> T-PSM-80	90.43	56.55	1.07	187
<i>h</i> T-PSM-160	235.93	67.81	1.18	81
<i>h</i> T-PSM-320	407.69	80.46	1.29	95

^{*a*} The [BSA] where half of the PL intensity enhancement was attained.

Figure. S24 PL spectra of (a) hT-PSM-40, (b) hT-PSM-80, (c) hT-PSM-160, and (d) hT-

PSM-320 in HEPES buffer solutions (70 mM, pH = 7.4) at different [BSA]. [TPE] = 2 μ M.

Figure. S25 The corresponding Hill plots of (a) *h*T-PSM-40, (b) *h*T-PSM-80, (c) *h*T-PSM-160, (d) *h*T-PSM-320 in HEPES buffer solutions (70 mM, pH = 7.4) at different [BSA]. (e) Plots of I/I_0 vs BSA. (f) Plots of PL intensity vs BSA. [TPE] = 2 μ M; I_0 : the PL intensity of the corresponding copolymer at [BSA] = 0.01 mg/L.

References

- 1. N. T. H. Ha, Polymer, 1999, **40**, 1081-1086.
- 2. M. Gao, Y. Li, X. Chen, S. Li, L. Ren and B. Z. Tang, ACS Appl. Mater. Interfaces, 2018,

10, 14410-14417.

3. X. Li, C. Pan, J. Cao, Z. Liu, Z. Zhu, C. Yan, W. Zhao, W.-H. Zhu and Q. Wang, Biomaterials, 2022, **289**, 121778.

4. R. Wang, X. Du, X. Ma, J. Zhai and X. Xie, Analyst, 2020, 145, 3846-3850.

5. J. Zhang, Z. Yan, S. Wang, M. She, Z. Zhang, W. Cai, P. Liu and J. Li, Dyes. Pigm.,

2018, **150**, 112-120.

- 6. K. Morishima, F. Ishiwari, S. Matsumura, T. Fukushima and M. Shibayama, *Macromolecules*, 2017, **50**, 5940-5945.
- 7. F. Ishiwari, H. Hasebe, S. Matsumura, F. Hajjaj, N. Horii-Hayashi, M. Nishi, T. Someya and T. Fukushima, *Sci. Rep-UK*, 2016, **6**, 24275.
- F. Ishiwari, M. Sakamoto, S. Matsumura and T. Fukushima, ACS Macro Lett., 2018, 7, 711-715.
- 9. X. Guo, T. Song, D. Chen, J. Zhu, Z. Li, Q. Xia, L. Wang and W. Yang, *ACS Appl. Mater. Interfaces*, 2023, **15**, 3543-3557.