
1

Supporting Information

Porous Organic Polymers Incorporating BODIPY Moieties for 

Efficient Removal of Organic Dyes from Aqueous Solutions

Lihua Guo, Qiming Huo, Shengyu Feng, Dengxu Wang,* Hongzhi Liu

National Engineering Research Center for Colloidal Materials & Key Laboratory of 

Special Functional Aggregated Materials, Ministry of Education, Shandong Key 

Laboratory of Advanced Organosilicon Materials and Technologies, School of 

Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China

*Corresponding author's e-mail: dxwang@sdu.edu.cn

Table of contents

Characterization.

Fig. S1. Standard working curves for rhodamine B (a), congo red (b), methylene blue 

(c), and methyl orange (d)

Fig. S2. (a) FT-IR spectroscopy of BIPOP-1, M-1 and M-2, (b) FT-IR spectroscopy of 

BIPOP-1 indicating the presence of C≡C

Fig. S3. (a) FT-IR spectroscopy of BIPOP-2, M-1 and M-3, (b) FT-IR spectroscopy of 

BIPOP-2 indicating the presence of C≡C

Fig. S4. 13C NMR of M-1 and M-2. The pound signs denote the solvents

Fig. S5. (a) XRD spectra of BIPOPs. The peaks at 2θ ≈ 22° are derived from Si-O-Si 

linkages in test glass device. (b) TGA curve of BIPOPs. (c-d) Scanning electron 

microscopy (SEM) images of BIPOP-1 (c) and BIPOP-2 (d)

Fig. S6. Equilibrium adsorption isotherms of BIPOP-2 towards various dyes

Fig. S7. Equilibrium adsorption isotherms of BIPOP-1 towards RB with error bars 

based on triplicate measurement

Fig. S8. The adsorption kinetics of BIPOP-1 towards RB. (a) Kinetic equilibrium curve 

Electronic Supplementary Material (ESI) for Polymer Chemistry.
This journal is © The Royal Society of Chemistry 2024



2

of RB onto BIPOP-1 with an initial concentration of 50 mg/L with the error bars based 

on triplicate measurements. (b) The time-dependent UV-vis spectra along with time 

plot; (c) The removal efficiency (%) vs time plot.

Fig. S9. Equilibrium adsorption isotherms of CPOP towards various dyes

Fig. S10. FT-IR spectroscopy of BIPOP-1, RB and RB-loaded BIPOP-1

Fig. S11. Wide-scan XPS spectra of BIPOP-1 and RB-loaded BIPOP-1

Fig. S12. High resolution XPS spectra of N1s

Fig. S13. (a) 13C NMR spectra of RB, and BODIPY-2H, and their mixture; (b) 19F NMR 

spectra of BODIPY-2H and its mixture with RB

Fig. S14. The 11B NMR spectra of BODIPY-2H and its mixture with RB

Fig. S15. The FT-IR spectroscopy of the pristine and recycled BIPOP-1

Fig. S16. The FE-SEM images of the pristine and recycled BIPOP-1

Fig. S17. BET plots of BIPOP-1 (r = 0.999982, C = 118.639)

Fig. S18. BET plots of BIPOP-2 (r = 0.999947, C = 378.787)

Fig. S19. BET plots of CPOP (r = 0.999977, C = 325.499)

Table S1. Comparison of the adsorption capacities of BIPOPs towards MO with other 

adsorbents

Table S2. Comparison of the adsorption capacity of BIPOPs on CR with other 

adsorbents

Table S3. Comparison of the adsorption capacity of BIPOPs on MB with other 

adsorbents

Table S4. Size and molecular properties of dye molecules

Table S5. The comparison of equilibrium adsorption capacities (Qe) of RB adsorbed 

by BIPOP-1 in pure water and seawater from Bohai sea

Table S6. Electronic binding energy of various elements in BIPOP-1, RB, and RB-



3

loaded BIPOP-1

References

Characterization. Fourier transform infrared (FT-IR) spectra were measured within a 

4000 to 400 cm-1 region on a Bruker TENSOR-27 infrared spectrophotometer (KBr 

pellet). 1H NMR, 13C NMR, 19F NMR, and 11B NMR spectra were measured on a 

Bruker AVANCE-300 or 400 NMR spectrometer. Solid-state 13C and 29Si cross-

polarization/magic-angle-spinning (CP/MAS) NMR spectra were recorded on a Bruker 

AVANCE-500 NMR spectrometer operating at a magnetic field strength of 9.4 T. The 

resonance frequencies at this field strength were 125 and 99 MHz for 13C and 29Si NMR, 

respectively. A chemagnetics 5 mm triple-resonance MAS probe was used to acquire 

13C and 29Si NMR spectra. 29Si MAS NMR spectra with high power proton decoupling 

were recorded by using a p/2 pulse length of 5 ms, a recycle delay of 120 s, and a 

spinning rate of 5 kHz. Elemental analyses were conducted using an Elementar vario 

EL III elemental analyzer. 

Thermogravimetric analysis (TGA) was conducted under N2 using a TA SDTQ600 

at a temperature range of room temperature to 800°C with a heating rate of 10 °C min–1. 

Field-emission scanning electron microscopy (FE-SEM) experiments were determined 

by using HITACHI S4800 Spectrometer. Powder X-ray diffraction (PXRD) were 

carried out on a Riguku D/MAX 2550 diffractometer with Cu-Kα radiation, 40 kV, 20 

mA with the 2θ range of 10°~90° (scanning rate of 10° min-1) at room temperature. 

Nitrogen sorption isotherm measurements were performed using a Micro meristics 

surface area and a pore size analyzer. Before measurement, the samples were degassed 

at 100°C for at least 12 h. A sample of ca. 100 mg and a UHP-grade nitrogen (99.999%) 

gas source were used for the nitrogen sorption measurements conducted at 77K and 



4

collected on a Quantachrome Quadrasorb apparatus. Brunauer-Emmett-Teller (BET) 

surface areas were determined over a P/P0 range from 0.01 to 0.20. Nonlocal density 

functional theory (NLDFT) pore size distributions were determined using the 

carbon/slit cylindrical pore mode of the Quadrawin software. X-ray photoelectron 

spectroscopy (XPS) was conducted on a Thermo Fischer ESCALAB 250Xi using a 

monochromatic Al Kα (1486.8 eV) X-ray source with a spot size of 500 μm. The anode 

was operated at 12.5 kV and 16 mA. Ultraviolet absorption (UV) spectra were 

performed with TU-1901 double UV–Vis spectrophotometer.

Fig. S1. Standard working curves for rhodamine B (a), congo red (b), methylene blue 

(c), and methyl orange (d)
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Fig. S2. (a) FT-IR spectroscopy of BIPOP-1, M-1 and M-2, (b) FT-IR spectroscopy 

of BIPOP-1 indicating the presence of C≡C 

Fig. S3. (a) FT-IR spectroscopy of BIPOP-2, M-1 and M-3, (b) FT-IR spectroscopy 

of BIPOP-2 indicating the presence of C≡C 

 

Fig. S4. 13C NMR of M-1 and M-2. The pound signs denote the solvents.
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Fig. S5. (a) XRD spectra of BIPOPs. The peaks at 2θ ≈ 22° are derived from Si-O-Si 

linkages in test glass device. (b) TGA curve of BIPOPs. (c-d) Scanning electron 

microscopy (SEM) images of BIPOP-1 (c) and BIPOP-2 (d)

Fig. S6. Equilibrium adsorption isotherms of BIPOP-2 towards various dyes
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Fig. S7. Equilibrium adsorption isotherms of BIPOP-1 towards RB with error bars 

based on triplicate measurement

Fig. S8. The adsorption kinetics of BIPOP-1 towards RB. (a) Kinetic equilibrium curve 

of RB onto BIPOP-1 with an initial concentration of 50 mg/L with the error bars based 

on triplicate measurements. (b) The time-dependent UV-vis spectra along with time 

plot; (c) The removal efficiency (%) vs time plot. 
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Fig. S9. Equilibrium adsorption isotherms of CPOP towards various dyes

Fig. S10. FT-IR spectroscopy of BIPOP-1, RB and RB-loaded BIPOP-1

Fig. S11. Wide-scan XPS spectra of BIPOP-1 and RB-loaded BIPOP-1
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Fig. S12. High resolution XPS spectra of N1s

Fig. S13. (a) 13C NMR spectra of RB, and BODIPY-2H, and their mixture; (b) 

19F NMR spectra of BODIPY-2H and its mixture with RB

Fig. S14. The 11B NMR spectra of BODIPY-2H and its mixture with RB
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Fig. S15. The FT-IR spectroscopy of the pristine and recycled BIPOP-1  

Fig. S16. The FE-SEM images of the pristine and recycled BIPOP-1 

Fig. S17. BET plots of BIPOP-1 (r = 0.999982, C = 118.639)



11

Fig. S18. BET plots of BIPOP-2 (r = 0.999947, C = 378.787)

Fig. S19. BET plots of CPOP (r = 0.999977, C = 325.499)

Table S1. Comparison of the adsorption capacities of BIPOPs towards MO with other 

adsorbents

Adsorbents Adsorption 
Capacity /mg g-1 Ref.

BIPOP-1 211.8 This work

BIPOP-2 162.0 This work

Zeolitic imidazole frameworks 1340 1

amorphous carbon nanotubes 253.26 2

UiO-66-NH2 242.72 3

activated carbon prepared from date pits 434 4

QPEI/SiO 105.4 5

SiO2 nanofibers 730.9 6

rambutan-like MnCo2O4 185.14 7

Lignin derived ZSM-5 (PZ) 514 8
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halloysite nanotubes/polypyrrole 

nanocomposites
214.6 9

chitosan/polyvinyl alcohol/zeolite 

electrospun composite nanofibrous 

membrane

153 10

copper-modified nanoalum 139 11

Modified nickel ferrite 

nanocomposite/functionalized chitosan
551.2 12

calcined Zn-Al layered double hydroxide 451.21 13

magnetic aminated lignosulfonate/carbon 121.28 14

Sensitized Bentonite 99.3 15

sugar beet bagasse 221.5 16

Cu2O/Bi2O3 1533.2 17

Superparamagnetic nanosorbent 240 18

CTA-CSM 131.9 19

Table S2. Comparison of the adsorption capacity of BIPOPs on CR with other 

adsorbents

Adsorbents Adsorption 
Capacity /mg g-1 Ref.

BIPOP-1 1477.4 This work

BIPOP-2 1280.1 This work

Congo red dye 1735 20

Zeolitic imidazole frameworks 3900 1

Nano-Cao 357.14 21

biochar derived from leather shavings 1916 22

Cationic Lignin Hydrogels 125.63 23

amorphous carbon nanotubes 467.97 2

titanium dioxide 152 24

FexCo3-xO4 nanoparticles 128.6 25

Fe3O4@nSiO2@mSiO2 1428 26

fibrous xonotlite 574.71 27

Mg-Al-mixed metal oxide（MMO-E） 3470 28

Hierarchical porous Ni/Co-LDH hollow 

dodecahedron
909.2 29

Nano-Fe3O4 1395 30

Coconut husk-raw clay-Fe composite 1649.3 31
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MOF-5/Cu 357.42 32

by coal-series kaolin 237.53 33

Zr-MOFs 1236.9 34

Table S3. Comparison of the adsorption capacity of BIPOPs on MB with other 
adsorbents

Adsorbents Adsorption Capacity 
/mg g-1 Ref.

BIPOP-1 287 This work
BIPOP-2 217 This work

activated carbon prepared from date pits 455 4

carbonaceous adsorbent 140.25 35

imprinted polymer 3628.84 36

porous soy protein isolate 272.4 37

Porous Biochar 208 38

activated carbon prepared from Malawian 

baobab fruit shell wastes
334.45 39

Chitosan crosslinked composite 499.8 40

biochar from solid wastes 161 41

ZnCl2-activated carbon 255.1 42

AC-alginate composite membrane 666 43

Mesoporous-Activated Carbon 1000 44

dimensional titanate nanosheets 3937 45

slow pyrolysis pine cone bio-char 106.4 46

Treated digested residue 285.71 47

magnetic alginate/rice husk bio-composite 274.9 48

nanofibrous membranes 3186.7 49

Stomatocyte-like hollow polydopamine 

nanoparticles
2896 50

Table S4. Size and molecular properties of dye molecules

Dyes Molecular Structure
Molecular Size 

(nm)

Molecular 
Weight

 (g/mol)
Nature

Adsorption 
wavelength 

(nm)
 

MB 1.26*0.77*0.65 320 cationic 665

 
MO 1.31*0.55*0.18 327 anionic 464
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RB

1.59*1.18*0.56 479 cationic 554

 
CR

2.62*0.74*0.43 696 anionic 497

Table S5. The comparison of equilibrium adsorption capacities (Qe) of RB 

adsorbed by BIPOP-1 in pure water and seawater from Bohai sea

initial dye concentration (mg/L) Qe (mg g-1)

50 167

500 1633pure water

1000 2207

50 167

500 1581seawater from Bohai sea

1000 2191

Table S6. Electronic binding energy of various elements in BIPOP-1, RB, and 

RB-loaded BIPOP-1

BIPOP-1 RB-loaded BIPOP-1 RB

B-F 192.74 193.17
B1s / eV

B-N 190.63 190.84
C-F 689.63 689.63

F1s / eV
B-F 685.89 685.50

Cl2p / eV Cl- 200.40 196.87
C-O 533.45 533.48

O1s / eV
O-C=O 531.66 532.08

C-N 400.30 400.46 399.21
B-N 399.63 399.30N1s / eV
N+ 402.22 401.51
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