Electronic Supplementary Information

Efficient metal-free crosslinking for common propellant binders

using nitrile oxide-alkene click ligation

Jinkang Dou,^a Lijie Cheng,^b Bojun Tan,^a Binghui Duan,^a Minghui Xu,^a Bozhou Wang^a

and Ning Liu^{a,*}

^a Department of Energetic Materials Science and Technology, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.

^b School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

* Corresponding authors.

+ Email: flackliu@sina.com

Figure S1. ¹³C-NMR spectrum of trialdehyde in CDCl₃.

Figure S2. ¹³C-NMR spectrum of trioxime in DMSO- d_6 .

Figure S3. ¹³C-NMR spectrum of TNO in CDCl₃.

Figure S4. ¹³C-NMR spectrum of HTP in CDCl₃.

Figure S5. ¹³C-NMR spectrum of ATPET-1 in CDCl₃.

Figure S6. ¹³C-NMR spectrum of ATPET-2 in CDCl₃.

Figure S7. ¹³C-NMR spectrum of ATPET-3 in CDCl₃.

Figure S8. GPC curves of HTP (black line), ATPET-1 (blue line), ATPET-2 (red line) and

ATPET-3 (magenta line).

 Binder
 HTP
 ATPET-1
 ATPET-2
 ATPET-3

 M_n (g·mol⁻¹)
 4894
 5042
 5557
 4994

 PDI
 1.47
 1.48
 1.33
 1.43

Table S1. M_n and PDI of HTP, ATPET-1, ATPET-2 and ATPET-3.

Table S2. Viscosity and T_g of HTP, ATPET-1, ATPET-2 and ATPET-3.

Binder	HTP	ATPET-1	ATPET-2	ATPET-3
Viscosity (Pa·s, 25°C)	16.09	16.98	16.15	17.22
T _g (°C)	-80.38	-79.79	-79.97	-79.78

-173.53 -170.68 -151.77 -151.77 -151.77 -138.78 -138.78 -126.08

-52.82 -42.39 -19.84

-77.43

Figure S9. ¹³C-NMR spectrum of isoxazoline products in $CDCl_3$ formed from TNO and methyl acrylate.

Figure S10. ¹³C-NMR spectrum of isoxazoline products in CDCl₃ formed from TNO and methyl methacrylate.

Figure S11. ¹³C-NMR spectrum of isoxazoline products in CDCl₃ formed from TNO and *tert*-butyl allylcarbamate.

Figure S12. FTIR spectra of isoxazoline products formed from TNO with methyl acrylate (black line), methyl methacrylate (blue line) and *tert*-butyl allylcarbamate (red line), respectively.

Figure S13. Stress-strain curves of elastomers formed from (a) ATPET-1/TNO, (b) ATPET-2/TNO, (c) ATPET-3/TNO and (d) HTP/N100.

Figure S14. TG curves of elastomers formed from ATPET-1/TNO (black line), ATPET-2/TNO (blue line), ATPET-3/TNO (red line) and HTP/N100 (magenta line).

Figure S15. ¹³C-NMR spectrum of PNIMMO in CDCl₃.

Figure S16. ¹³C-NMR spectrum of ATPNIMMO in CDCl₃.

Figure S17. FTIR spectra of PNIMMO (black line) and ATPNIMMO (blue line).

Figure S18. Stress-strain curves and photo of elastomers formed from ATPNIMMO/TNO.