Electronic Supplementary Information

Regulation of mechanical properties and self-healing performance of polyurethane nanocomposites by tuning the contents of free and associated hydrogen bonds

Aofei Zhang,‡^a Qiaona Huang,‡^a Xiaoyu Du,^a Yinmao Wang,^b Juan Yang,^a Sumin Li,^a Maiyong Zhu,*^a Yijing Nie*^a

 ^a Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
 ^b Key Laboratory for High Performance Transparent Protective Materials of Jiangsu Province, Jiangsu Tiemao Glass Co., Ltd., Nantong, 226600, China

[‡] These authors contributed equally to this work.

^{*} Corresponding Authors. E-mail: maiyongzhu@ujs.edu.cn, nieyijing@ujs.edu.cn

Scheme S1. The synthesis of UPy-NCO.

Scheme S2. The synthesis process of UK-SiO₂.

Scheme S3. The preparation process of PU-3S.

SiO ₂ .					
	PU	PU-1S	PU-3S	PU-5S	
Tensile strength	2.13	2.20	5.89	3.11	
(MIPa)					

Table S1. Tensile strength of the PU nanocomposites filled with different contents of unmodified

Fig. S1. FTIR spectra of UPy-NCO, unmodified nano-SiO₂ and UK-SiO₂.

Fig. S2. (a) ¹H NMR spectra of UPy-NCO, unmodified nano-SiO₂ and UK-SiO₂; (b, c) locally amplified ¹H NMR spectra of UPy-NCO, unmodified nano-SiO₂ and UK-SiO₂.

Fig. S3. ¹H NMR spectra of UK-SiO₂ particles containing MSM as internal standard (the left panel); locally amplified ¹H NMR spectra of UK-SiO₂ particles containing MSM as internal standard (the right panel).

Table S2. Particle size of nano-SiO₂ before and after modification.

	Unmodified nano-SiO ₂	UK-SiO ₂
Particle size (nm)	114.1	286.4

Fig. S4. FTIR spectra of the five filled PU samples, that is, (a) PU-3S, (b) PU-2S-1U, (c) PU-1.5S-1.5U, (d) PU-1S-2U and (e) PU-3U at different temperatures.

Fig. S5. (a) Photo of water contact angle of nano-SiO₂; (b) photo of water contact angle of UK-SiO₂; (c) photo of water contact angle of PU.

Fig. S6. (a) SEM image of PU-3S; distribution of (b) C element, (c) N element, (d) O element, (e) Si element in PU-3S. The content of C element in PU-3S is the highest, followed by that of O element, Si element and N element. The presence of Si element further indicates that nano-SiO₂ is successfully modified.

Fig. S7. TEM micrographs of (a) the PU-3S sample, (b) the PU-2S-1U sample, (c) the PU-1S-2U sample and (d) the PU-3U sample, respectively.

Fig. S8. SAXS curves of the five different PU samples (the PU-3S, the PU-1S-2U, the PU-1.5S-1.5U, the PU-2S-1U and the PU-3U samples).

	PU-3S	PU-2S-1U	PU-1.5S-1.5U	PU-1S-2U	PU-3U
Tensile strength	5 80	18.04	6 9	5.24	12.00
(MPa)	5.89	10.94	0.8	3.24	15.09

Table S3. Tensile strengths of the five PU nanocomposites.

Fig. S9. Stress-strain curves of the different self-healing PU samples.

conditions.						
	25°C-1h	25°C-2h	25°C-3h	45°C-1h	60°C-1h	
PU-3S	55.35%	63.84%	71.14%	87.60%	92.19%	
PU-2S-1U	24.39%	35.27%	58.13%	77.45%	93.98%	
PU-1.5S-1.5U	54.41%	63.38%	73.68%	90.44%	107.94%	
PU-1S-2U	58.59%	63.93%	76.53%	91.60%	120.23%	
PU-3U	52.94%	61.88%	68.75%	85.10%	97.78%	

 Table S4. The healing efficiency of the five PU nanocomposites under different self-healing conditions

Table S5. Healing efficiency of the five PU nanocomposite samples with different thickness

healed at 25°C for 3 h.						
	0.5 mm	1 mm	1.5 mm	2 mm		
PU-3S	68.46%	71.14%	73.24%	74.07%		
PU-2S-1U	55.91%	58.13%	59.23%	61.85%		
PU-1.5S-1.5U	70.17%	73.68%	74.83%	75.39%		
PU-1S-2U	74.04%	76.53%	77.61%	78.43%		
PU-3U	63.41%	68.75%	70.48%	71.32%		

	PU-3S	PU-2S-1U	PU-1.5S-1.5U	PU-1S-2U	PU-3U
Tensile strength	5.43	16.72	5.64	5.04	11.34
(MPa)-0.5 mm					
Tensile strength	5.89	18.94	6.80	5.24	13.09
(MPa)-1 mm					
Tensile strength	6.76	19.56	7.32	5.69	14.3
(MPa)-1.5 mm					
Tensile strength	7.05	20.21	8.10	6.51	15.2
(MPa)-2 mm					

Table S6. Tensile strengths of the five PU nanocomposite samples with different thickness.

Fig. S10. (a~d) are the AFM adhesion distribution diagrams of PU-2S-1U, PU-3S, PU-1S-2U and PU-3U surfaces, respectively; (a'~d') are the AFM adhesion distribution diagrams of PU-2S-1U, PU-3S, PU-1S-2U and PU-3U cross-sections, respectively.