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Experimental section 

Measurements 

1H (400 MHz), 13C (100 MHz) and 31P NMR (162 MHz) spectra were recorded on JEOL 

ECS-400 and ECZ-400 spectrometers in CDCl3 and DMSO-d6 with TMS as an internal 

standard. IR absorption spectra were measured on a JASCO FT/IR-4100 

spectrophotometer. Mass spectra were measured on a Bruker Compact QToF mass 

spectrometer using an atmospheric pressure chemical ionization (APCI) probe under the 

following conditions: solvent, THF/i-PrOH; mass range (m/z) < 2000; mode, negative. 

Elemental analysis was performed at the analytical center, Faculty of Engineering, Osaka 

University. Number-average molecular weight (Mn) and dispersity (Đ) values of 

oligomers were determined by a size exclusion chromatography (SEC) system consisting 

of JASCO RI-4030, UV-4075, PU4180, DG-2080-53, CO-4060, AS-2055 Plus and LC-

Net II/AD, equipped with Shodex polystyrene gel columns KF-805L × 3, using THF as 

an eluent at a flow rate of 1.0 mL/min, calibrated using polystyrene standards at 40 °C. 

All absorption and emission spectra were measured in a quartz cell (optical path length: 

1 cm). UV–vis absorption spectra were recorded on a JASCO V-630 and V-780 

spectrometer. In the polarized case, a Glan-Taylor prism was introduced into the 

spectrophotometer’s optical path. Photoluminescence and excitation spectra were 

recorded on a Hitachi F-7000 excited at 430 nm. Sample solutions of photoluminescence 

spectra were stirred for 1 h under N2 in a glove box to remove dissolved oxygen. Absolute 

quantum yields of fluorescence and phosphorescence were recorded in a quartz cell on a 

Hamamatsu Photonics C11347. Fluorescence lifetimes were recorded on a Hamamatsu 

Photonics C11367-01 excited at 405 nm and monitored at 500 nm. Phosphorescence 

lifetimes were recorded on a Hamamatsu Photonics C11367-01 excited at 450 nm using 

a Xe flash lamp (C11567-02, 60 W), monitored at 640 nm, and equipped with a bandpass 
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filter at 450 nm (Edmund, FWHM: 10 nm, OD4). TTA–UC spectra were measured 

according to the following procedure: Sample solutions of a sensitizer (c = 5 µM) and 

9,10-diphenylanthracene as an emitter (c = 60 µM, Tokyo Chemical Industry Co., D4401) 

were stirred more than 1 h in a N2 atmosphere-controlled glove box to remove dissolved 

oxygen. The UC spectra were recorded using a 450 nm CW laser (450 nm, 4.5 mW, 

CPS450, THORLABS) as an excitation source on an Ocean photonics FLAME-S 

equipped with a notch filter at 457 nm. UC emission lifetimes were recorded on a 

Hamamatsu Photonics C11367-01 excited at 450 nm using a Xe flash lamp (C11567-2, 

60 W), monitored at 410 nm, and equipped with an ND filter (5%) and a bandpass filter 

at 450 nm (Edmund, FWHM: 10 nm, OD4) for excitation light, and a short pass filter at 

430 nm (Asahi Spectra, SV0430) for emission. Phosphorescence lifetimes of solutions 

were recorded in a similar manner to the UC emission lifetimes monitored at 640 nm and 

equipped with a long pass filter (Optosigma, SCF-50S-48Y). The UC quantum yields 

were determined using 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-

pyran (ΦF =34% in methanol, Exciton) as a standard in the following equation: 

 

ηUC = 2Φstd(
Astd
Aunk

) (
Iunk
Istd

) (
ηunk
ηstd

)2 

 

where Φstd is the quantum yield of fluorescence of the standard, ηUC, Aunk, Iunk and ηunk 

represent the quantum efficiency, absorbance, integrated photoluminescence intensity 

and refractive index of the sample. The terms for the subscript std represent the reference 

values.S1 The emission spectra of the films were recorded in a flow cell on the Ocean 
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photonics FLAME-S equipped with the notch filter using the 450 nm CW laser as the 

excitation source. TGA was measured on a SHIMADZU thermogravimetric analyzer 

TGA-50. DSC was measured on a SEIKO DSC 6200 differential scanning calorimeter 

under N2. XRD was measured on a Rigaku Smart Lab. X-ray diffractometer (CuKα1 for 

X-ray source). 

 

Materials 

All solvents for the reaction were degassed by Ar bubbling and desiccated with molecular 

sieve 4A. All other reagents were commercially obtained and used as received without 

purification. 

 

Synthesis of monomer 1 

4-Bromo-1,8-naphthalimideS2 

To a dispersion of 4-bromo-1,8-naphthalic anhydride (8.31 g, 30.0 mmol) in ethanol (240 

mL), 30% aqueous ammonia (60 mL) was added. The resulting mixture was heated with 

refluxing overnight. After cooling the resulting solution, the solid was filtered, washed 

with ethanol, and dried to obtain the title compound as a beige solid (7.18 g, 26.0 mmol) 

in 87% yield. 1H NMR (400 MHz, DMSO-d6): δ 7.93–8.05 (Ar, 1H), 8.16–8.34 (Ar, 1H), 

8.44–8.55 (Ar, 1H), 11.87 (s, 1H, NH) ppm. 

 

N-(5-Hexenyl)-4-bromo-1,8-naphthalimide 

A mixture of 4-bromo-1,8-naphthalimide (1.38 g, 5.0 mmol), 6-bromo-1-hexene (0.82 g, 

5.0 mmol), K2CO3 (0.97 g, 7.0 mmol) and DMF (10.0 mL) was stirred at 90 °C overnight, 
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then concentrated to obtain a brown solid. It was purified by silica gel column 

chromatography eluted with CHCl3 to obtain the title compound as slightly a yellow solid 

(1.59 g) in 88% yield. 1H NMR (400 MHz, CDCl3): δ 1.51–1.57 (m, 2H, –CH2–), 1.71–

1.81 (m, 2H, –CH2–), 2.10–2.18 (m, 2H, –CH2–CH=), 4.15–4.20 (m, 2H, –NCH2–), 4.93–

5.04 (m, 2H, =CH2), 5.76–5.87 (m, 1H, –CH=), 7.82–7.87 (1H, Ar), 8.04 (1H, Ar), 8.42 

(1H, Ar), 8.56–8.58 (1H, Ar), 8.63–8.67 (1H, Ar) ppm. 13C NMR (100 MHz, CDCl3): δ 

26.3, 27.5, 33.4, 40.4, 114.7, 122.2, 123.0, 128.0, 128.9, 130.2, 130.5, 131.0, 131.2, 132.0, 

133.2, 138.5, 163.5 ppm. 

 

N-(5-Hexenyl)-4-[2-(trimethylsilyl)ethynyl]-1,8-naphthalimide 

N-(5-Hexenyl)-4-bromo-1,8-naphthalimide (1.43 g, 4.0 mmol), PdCl2(PPh3)2 (28.1 mg, 

0.04 mmol), CuI (7.6 mg, 0.04 mmol) and 2-(dicyclohexylphosphino)-2',4',6'-

triisopropyl-1,1'-biphenyl (XPhos, 19.1 mg, 0.04 mmol) were dissolved in a solution of 

THF (4 mL) and Et3N (1 mL) under Ar. Trimethylsilylacetylene (TMSA, 0.59 g, 0.85 

mL, 6.0 mmol) was added to the resulting mixture, and heated with refluxing overnight. 

CH2Cl2 (50 mL) was added to the mixture, and the mixture was washed with 1.0 M NH4Cl 

aq. The organic layer was separated from the water layer, dried over anhydrous MgSO4, 

and concentrated. The residual mass was purified by silica gel column chromatography 

eluted with CH2Cl2 to obtain the title compound as a yellow solid (1.49 g, 3.9 mmol) 

quantitatively. 1H NMR (400 MHz, CDCl3): δ 0.35 (s, 9H, –Si(CH3)3), 1.49–1.57 (m, 2H, 

–CH2–), 1.71–1.79 (m, 2H, –CH2–), 2.10–2.17 (m, 2H, –CH2–CH=), 4.18 (t, J = 7.5 Hz, 

2H, –NCH2–), 4.93–5.04 (m, 2H, =CH2), 5.77–5.87 (m, 1H, –CH=), 7.80–7.84 (1H, Ar), 

7.88–7.90 (1H, Ar), 8.50–8.52 (1H, Ar), 8.62–8.64 (2H, Ar) ppm. 13C NMR (100 MHz, 

CDCl3): δ –0.2, 26.4, 27.6, 33.5, 40.3, 101.2, 105.2, 114.7, 122.3, 122.9, 127.2, 127.5, 

127.9, 130.2, 131.1, 131.5, 131.7, 132.3, 138.5, 163.6, 163.9 ppm. 
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N-(5-Hexenyl)-4-ethynyl-1,8-naphthalimide 

N-(5-Hexene-1-yl)-4-[2-(trimethylsilyl)ethynyl]-1,8-naphthalimide (1.69 g, 4.5 mmol) 

and K2CO3 (1.24 g, 9.0 mmol) were added to a solution of CH2Cl2 (5 mL) and CH3OH 

(5 mL). The resulting mixture was stirred at r.t. for 30 min. CH2Cl2 (30 mL) was added 

to the mixture, and the resulting mixture was washed with saturated NaCl aq. The organic 

layer was separated from the water layer, dried over anhydrous MgSO4, concentrated, and 

the residual mass was purified by silica gel column chromatography eluted with CH2Cl2 

to obtain a yellow solid (1.22 g). It was washed with warm hexane and the insoluble parts 

were removed by filtration. The filtrate was concentrated to obtain the title compound as 

a yellow solid (1.16 g, 3.8 mmol) in 85% yield. 1H NMR (400 MHz, CDCl3): δ 1.51–1.57 

(m, 2H, –CH2–), 1.72–1.81 (m, 2H, –CH2–), 2.11–2.17 (m, 2H, –CH2–CH=), 3.74 (s, 1H, 

C≡CH), 4.18 (t, J = 7.5 Hz, 2H, –NCH2–), 4.93–5.05 (m, 2H, =CH2), 5.77–5.87 (m, 1H, 

–CH=), 7.81–7.85 (1H, Ar), 7.93–7.96 (1H, Ar), 8.52–8.54 (1H, Ar), 8.61–8.68 (2H, Ar) 

ppm. 13C NMR (100 MHz, CDCl3): δ 26.4, 27.6, 33.5, 40.3, 80.3, 86.5, 114.7, 122.7, 

122.9, 126.1, 127.6, 127.8, 130.1, 131.6, 131.6, 131.8, 132.1, 138.5, 163.5, 163.8 ppm. 

IR (KBr): 3568, 3227, 3078, 2939, 2855, 2098, 1696, 1656, 1613, 1587, 1508, 1465, 1441, 

1389, 1354, 1322, 1286, 1245, 1174, 1115, 1094, 1074, 1061, 1010, 995, 954, 913, 864, 

806, 783, 753, 737, 695, 670, 615, 680, 504 cm–1. 

 

Monomer 1 

Compound 9 (913 mg, 3.00 mmol), PtI2(PEt3)2 (822.3 mg, 1.20 mmol) and CuI (57.1 mg, 

0.30 mmol) were dissolved a solution of CH2Cl2 (5 mL) and Et3N (5 mL) under Ar. The 

resulting mixture was stirred at r.t. overnight. CH2Cl2 (50 mL) was added to the mixture, 

and the solution was washed with 1.0 M NH4Cl aq. The organic layer was dried over 
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anhydrous MgSO4, and concentrated. The residual mass was purified by silica gel column 

chromatography eluted with CH2Cl2 → CH2Cl2/CH3COOC2H5 = 100/1 to obtain 1 as 

yellow solid (1.21 g, 1.16 mmol). Yield = 97%. 1H NMR (400 MHz, CDCl3): δ 1.23–1.31 

(m, 18H, –CH3), 1.49–1.57 (m, 4H, –CH2–), 1.72–1.79 (m, 4H, –CH2–), 2.10–2.24 (m, 

16H, –PCH2–, –CH2–CH=), 4.15–4.20 (m, 4H, –NCH2–), 4.93–5.04 (m, 4H, =CH2), 

5.77–5.87 (m, 2H, –CH=), 7.65–7.67 (2H, Ar), 7.71–7.75 (2H, Ar), 8.46–8.48 (2H, Ar), 

8.58–8.60 (2H, Ar), 8.77–8.79 (2H, Ar) ppm. 13C NMR (100 MHz, CDCl3): δ 8.4, 16.4, 

16.6, 16.8, 26.4, 27.6, 33.5, 40.2, 108.9, 114.6, 118.7, 122.8, 126.2, 128.5, 128.9, 131.1, 

132.1, 133.2, 133.4, 138.6, 164.2, 164.5 ppm. 31P NMR (162 MHz, CDCl3): δ 13.0 (J = 

2330 Hz) ppm. IR (KBr): 3076, 2960, 2934, 2876, 2084, 1695, 1658, 1610, 1581, 1506, 

1458, 1438, 1421, 1383,1351, 1238, 1170, 1145, 1093, 1067, 1037, 994, 914, 864, 789, 

762, 734, 714, 643, 592, 581, 519 cm–1. APCI-MS (m/z): calcd. 1035.3838 

([C52H62N2O4P2Pt]–), found 1035.3833. Anal. Calcd. for C52H62N2O4P2Pt: C 60.28, H 

6.03, N 2.70. Found: C 60.28, H 6.18, N 2.74. 
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Scheme S1  Synthetic route for monomer 1. 

 

Synthesis of monomer 2 

4-[2-(Trimethylsilyl)ethynyl]-1,8-naphthalimide. 4-Bromo-1,8-naphthalic anhydride 

(3.31 g, 12.0 mmol), PdCl2(PPh3)2 (84.2 mg, 0.12 mmol), CuI (22.9 mg, 0.12 mmol) and 

XPhos (57.2 mg, 0.12 mmol) were dissolved in a solution of DMF (15 mL) and Et3N (15 

mL) under Ar. TMSA (1.47 g, 2.10 mL, 15.0 mmol) was added to the solution, and the 

resulting mixture was heated at 80 °C overnight. CH2Cl2 (70 mL) was added to the 

mixture, and the solution was washed with 1.0 M NH4Cl aq. The organic layer was 

separated from the water layer, dried over anhydrous MgSO4, and concentrated. The 

residual mass was purified by silica gel column chromatography eluted with CH2Cl2 → 

CH2Cl2/CH3COOC2H5 = 20/1 to obtain the title compound as a yellow solid (2.86 g, 9.7 
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mmol) in 81% yield. 1H NMR (400 MHz, DMSO-d6): δ 0.36 (s, 9H, –Si(CH3)3), 7.95–

8.03 (2H, Ar), 8.34–8.40 (1H, Ar), 8.47–8.52 (1H, Ar), 8.55–8.62 (1H, Ar), 11.81 (s, 1H, 

NH) ppm. 13C NMR (100 MHz, DMSO-d6): δ –0.3, 101.2, 104.7, 122.7, 123.0, 125.7, 

128.2, 128.4, 129.1, 130.4, 131.2, 131.4, 163.4, 163.8 ppm. 

 

4-Ethynyl-1,8-naphthalimide 

4-[2-(Trimethylsilyl)ethynyl]-1,8-naphthalimide (1.33 g, 6.0 mmol) was added to a 

solution of THF (20 mL) and MeOH (20 mL). KOH aq (10 mL, 1.01 g, 18.0 mmol) was 

added to the solution, and the resulting mixture was stirred at r.t. for 2 h. The solution 

was acidified with 1.0 M HCl aq. to precipitate a solid mass. It was collected by filtration, 

and the solid was washed with water and cooled MeOH to obtain a yellow solid (1.08 g, 

4.9 mmol) in 81% yield. 1H NMR (400 MHz, DMSO-d6): δ 5.09 (s, 1H, C≡CH), 7.96–

8.05 (2H, Ar), 8.39–8.41 (1H, Ar), 8.50–8.52 (1H, Ar), 8.62–8.64 (1H, Ar), 11.83 (s, 1H, 

NH) ppm. 

 

Monomer 2 

4-Ethynyl-1,8-naphthalimide (663.7 mg, 3.0 mmol), PtI2(PEt3)2 (1.08 g, 1.5 mmol) and 

CuI (57.1 mg, 0.30 mmol) were dissolved a solution of DMF (10 mL) and Et3N (10 mL) 

under Ar. The resulting mixture was stirred at r.t. for 3 days to precipitate a solid. The 

resulting mixture was added to a solution of 1.0 M NH4Cl aq (100 mL) and MeOH (100 

mL), and stirred at r.t. overnight to precipitate a solid mass. It was collected by filtration 

and washed with water and MeOH, and dried in vacuo to obtain yellow solid. It was 

purified by silica gel chromatography eluted with CH2Cl2 → CH2Cl2/MeOH = 20/1 to 

obtain 2 as a yellow solid (1.21 g, 1.39 mmol) in 92% yield. 1H NMR (400 MHz, DMSO-

d6): δ 1.18–1.26 (m, 18H, –CH3), 2.17–2.21 (m, 12H, –PCH2–), 7.69 (2H, Ar), 7.90 (2H, 
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Ar), 8.33 (2H, Ar), 8.45 (2H, Ar), 8.73 (2H, Ar), 11.66 (s, 2H, NH) ppm. 31P NMR (162 

MHz, DMSO-d6): δ 13.9 (J = 2279 Hz) ppm. IR (KBr): 3648, 3175, 3059, 2962, 2931, 

2077, 1693, 1674, 1579, 1505, 1458, 1391, 1363, 1265, 1235, 1188, 1102, 1039, 989, 856, 

779, 758, 698, 640, 606, 519 cm–1. APCI-MS (m/z): calcd. 871.2268 ([C40H42N2O4P2Pt]–), 

found 871.2256. 

 

 

Scheme S2  Synthetic route for monomer 2. 

 

 

ADMET oligomerization 

A solution of 1,3-bis(2,4,6-trimethylphenyl)-2-

imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium 

(Grubbs second generation catalyst, G2, 5.10 mg, 0.006 mmol) in o-dichlorobenzene (1.2 

mL) was added to monomer 1 (310.8 mg, 0.03 mmol) fed in a Schlenk tube connected 
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with a trap, a mercury manometer and a diaphragm vacuum pump, in that order as shown 

in Fig. S1. The solution was degassed by the freeze-pump-thaw method three times. It 

was stirred at 50 °C for 48 h under reduced pressure (11.2 kPa) using a KNF diaphragm 

vacuum pump N810.3FT.18(Ex). Ethyl vinyl ether (1.0 mL, ca. 0.01 mol) and CH2Cl2 

(1.0 mL) were added to the solution, and stirred at r.t. for 15 min. The resulting mixture 

was poured into a large amount of MeOH to precipitate a solid mass. It was separated by 

filtration using a membrane filter (ADVANTEC H100A047A), washed with large 

amount of MeOH, and dried in vacuo to obtain a solid mass. It was dissolved in CH2Cl2, 

and reprecipitated with hexane to obtain oligo(1) as a yellow solid in 96% yield. Mn = 

8,900, Đ = 2.21. 

 

 
Fig. S1  Photograph of an apparatus for ADMET oligomerization. 

 

Polycondensation of 2 with 3a–3c 

Typical procedure: A solution of 2 (261.5 mg, 0.30 mmol) in N-methylpyrrolidone 

(NMP) (14.4 mL) was heated at 90 °C until 2 was completely dissolved in a Schlenk tube. 

K2CO3 (414.6 mg, 3.0 mmol) and a solution of 1,6-dibromohexane (3a, 0.6 mL, 73.2 mg, 

0.30 mmol) were added to the solution, and the mixture was stirred at 90 °C for 6 h. It 

was poured into a large amount of MeOH (300 mL) to precipitate a solid. It was separated 
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by filtration using a membrane filter (ADVANTEC H100A047A), washed with large 

amount of water and MeOH, and dried in vacuo to obtain oligo(2-3a) in 94% yield. 

Oligo(2-3b) and oligo(2-3c) were synthesized in a manner similar to oligo(2-3a). 

 

Spectroscopic data for the oligomers 

Oligo(1): Yield 96%. 1H NMR (400 MHz, CDCl3): δ 1.16–1.31 (m, 18H, –CH3), 1.41–

1.88 (m, 12H, –CH2–), 2.04–2.42 (m, 16H, –PCH2–, –CH2–CH=), 4.15–4.35 (m, 4H, –

NCH2–), 4.93–5.11 (m, 1H, =CH2), 5.36–5.58 (internal –CH=), 5.77–5.92 (terminal –

CH=), 7.61–7.74 (4H, Ar), 8.46–8.60 (4H, Ar), 8.76–8.78 (2H, Ar) ppm. 31P NMR (162 

MHz, CDCl3): δ 13.0 (J = 2330 Hz) ppm. Oligo(2-3a): Yield 94%. 1H NMR (400 MHz, 

CDCl3): δ 1.19–1.31 (m, 18H, –CH3), 1.43–1.76 (m, 8H), 2.10–2.22 (m, 12H, –PCH2–), 

4.18 (t, J = 7.5 Hz, 4H, –NCH2–), 7.60–7.77 (4H, Ar), 8.37–8.47 (2H, Ar), 8.52–8.59 (2H, 

Ar), 8.76–8.83 (2H, Ar) ppm. 31P NMR (162 MHz, CDCl3): δ 13.0 (J = 2355 Hz) ppm. 

Oligo(2-3b): Yield 93%. 1H NMR (400 MHz, CDCl3): δ 1.19–1.31, 1.43–1.76 (m, 30H, 

–CH3, –CH2–), 2.10–2.22 (m, 12H, –PCH2–), 4.18 (t, J = 7.5 Hz, 4H, –NCH2–), 7.60–

7.77 (4H, Ar), 8.37–8.47 (2H, Ar), 8.52–8.59 (2H, Ar), 8.76–8.83 (2H, Ar) ppm. 31P NMR 

(162 MHz, CDCl3): δ 13.0 (J = 2355 Hz) ppm. Oligo(2-3c): Yield 92%. 1H NMR (400 

MHz, CDCl3): δ 1.09–1.41, 1.63–1.74 (m, 38H, –CH3, –CH2–), 2.16–2.23 (m, 12H, –

PCH2–), 4.17 (t, J = 7.5 Hz, 4H, –NCH2–), 7.63–7.76 (4H, Ar), 8.44–8.48 (2H, Ar), 8.56–

8.60 (2H, Ar), 8.74–8.80 (2H, Ar) ppm. 31P NMR (162 MHz, CDCl3): δ 13.0 (J = 2355 

Hz) ppm. 
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Computations 

All computational calculations were performed with the Gaussian 16 program,S3 Fujitsu-

Arm-G16 Rev C.01 running on Fugaku, Center for Computational Science, RIKEN, and 

ES64L-G16 Rev B.01 running on the supercomputer systems, Academic Center for 

Computing and Media Studies, Kyoto University. The UV–vis and IR absorption spectra 

were simulated by the TD-DFT and DFT methods with the ωB97XD functional in 

conjugation with the basis set, 6-31G* (C, H, N, O, P) and LANL2DZ (Pt). 
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Fig. S2  1H-NMR (400 MHz) spectrum of 4-bromo-1,8-naphthalimide measured in 
DMSO-d6 with tetramethylsilane (TMS) as an internal standard. 
 

 
Fig. S3.  1H-NMR (400 MHz) spectrum of N-(5-hexenyl)-4-bromo-1,8-naphthalimide 
measured in CDCl3 with TMS as an internal standard. 
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Fig. S4.  13C-NMR (100 MHz) spectrum of N-(5-hexenyl)-4-bromo-1,8-naphthalimide 
measured in CDCl3. 
 

 
Fig. S5  1H-NMR (400 MHz) spectrum of N-(5-hexenyl)-4-[2-(trimethylsilyl)ethynyl]-
1,8-naphthalimide measured in CDCl3 with TMS as an internal standard. 
 

 (t
ho

us
an

dt
hs

)
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

9.
0

10
.0

11
.0

12
.0

13
.0

14
.0

15
.0

16
.0

17
.0

18
.0

X : parts per Million : Carbon13

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0

16
3.

53
2

13
8.

46
4

13
3.

15
5

13
1.

95
7

13
1.

15
2

13
1.

02
7

13
0.

52
0

13
0.

15
5

12
8.

89
1

12
8.

01
8

12
3.

03
5

12
2.

17
3

11
4.

71
8

77
.3

16
77

.0
00

76
.6

84

40
.3

75

33
.4

37

27
.5

15
26

.3
36

N OO

Br

ab
un

da
nc

e
0

1.
0

2.
0

X : parts per Million : Proton

12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 -1.0 -2.0

8.
64

3
8.

63
6

8.
62

2
8.

61
7

8.
58

5
8.

56
6

8.
52

4
8.

50
4

8.
40

9
7.

90
4

7.
88

4
7.

58
4

7.
26

3
6.

99
9

5.
85

2
5.

82
7

5.
81

0
5.

78
4

5.
47

3
5.

30
2

5.
04

0
5.

03
6

4.
96

1

4.
19

7
4.

17
8

4.
15

9

2.
17

5
2.

15
8

2.
14

1
2.

12
2

2.
10

4
2.

01
4

1.
75

3
1.

57
0

1.
52

9
1.

25
4

0.
96

6
0.

94
8

0.
51

3
0.

36
4

0.
34

2
0.

31
8

0.
30

4
0.

26
3

0.
21

2
0.

17
0

0.
12

0
0.

00
0

-0
.1

67
-0

.2
87

9.
03

2.
58

2.
37

2.
07

2.
03

2.
02

2.
02

1.
01

1.
01

1.
00

1.
00

N OO
b c

d e

f g

Si a

Ar

TMS
CHCl3

CH2Cl2

a

b

f

g
c

e
d



 S15 

 
Fig. S6  13C-NMR (100 MHz) spectrum of N-(5-hexenyl)-4-[2-(trimethylsilyl)ethynyl]-
1,8-naphthalimide measured in CDCl3. 
 

 
Fig. S7  1H-NMR (400 MHz) spectrum of N-(5-hexenyl)-4-ethynyl-1,8-naphthalimide 
measured in CDCl3 with TMS as an internal standard. 
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Fig. S8  13C-NMR (100 MHz) spectrum of N-(5-hexenyl)-4-ethynyl-1,8-naphthalimide 
measured in CDCl3. 
 

 
Fig. S9  1H-NMR (400 MHz) spectrum of 1 measured in CDCl3 with TMS as an internal 
standard. 
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Fig. S10  13C-NMR (100 MHz) spectrum of 1 measured in CDCl3. 
 

 
Fig. S11  31P-NMR (162 MHz) spectrum of 1 measured in CDCl3. 

 (t
ho

us
an

dt
hs

)
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

9.
0

10
.0

11
.0

12
.0

13
.0

14
.0

15
.0

16
.0

17
.0

18
.0

19
.0

20
.0

21
.0

22
.0

23
.0

X : parts per Million : Carbon13

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0

16
4.

46
2

16
4.

15
5

13
8.

60
7

13
3.

44
2

13
3.

17
4

13
2.

07
2

13
1.

08
5

12
8.

88
1

12
8.

46
9

12
6.

16
9

12
2.

81
5

11
8.

67
5

11
4.

61
2

10
8.

89
1

77
.3

16
77

.0
00

76
.6

84

40
.1

54

33
.5

14

27
.6

39
26

.4
13

16
.7

73
16

.5
90

16
.4

18
8.

38
8

N OO

Pt PEt3Et3P

NO O

ab
un

da
nc

e
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

X : parts per Million : Phosphorus31

300.0 200.0 100.0 0 -100.0 -200.0 -300.0

20
.2

23
13

.0
18

5.
83

9

N OO

Pt PEt3Et3P

NO O



 S18 

 
Fig. S12  1H-NMR (400 MHz) spectrum of 4-[2-(trimethylsilyl)ethynyl]-1,8-
naphthalimide measured in DMSO-d6 with TMS as an internal standard. 
 

 
Fig. S13  13C-NMR (100 MHz) spectrum of 4-[2-(trimethylsilyl)ethynyl]-1,8-
naphthalimide measured in DMSO-d6. 
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Fig. S14  1H-NMR (400 MHz) spectrum of 4-ethynyl-1,8-naphthalimide measured in 
DMSO-d6 with TMS as an internal standard. 
 

 
Fig. S15  1H-NMR (400 MHz) spectrum of 2 measured in DMSO-d6 with TMS as an 
internal standard. 
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Fig. S16  31P-NMR (162 MHz) spectrum of 2 measured in DMSO-d6. 
 

 
Fig. S17  1H-NMR (400 MHz) spectrum of oligo(1) measured in CDCl3 with TMS as 
an internal standard. 
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Fig. S18  1H-NMR (400 MHz) spectrum of oligo(2-3a) measured in CDCl3 with TMS 
as an internal standard. 
 

 
Fig. S19  31P-NMR (162 MHz) spectrum of oligo(2-3a) measured in CDCl3. 
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Fig. S20  1H-NMR (400 MHz) spectrum of oligo(2-3b) measured in CDCl3 with TMS 
as an internal standard. 
 

 
Fig. S21  31P-NMR (162 MHz) spectrum of oligo(2-3b) measured in CDCl3. 
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Fig. S22  1H-NMR (400 MHz) spectrum of oligo(2-3c) measured in CDCl3 with TMS 
as an internal standard. 
 

 
Fig. S23  31P-NMR (162 MHz) spectrum of oligo(2-3c) measured in CDCl3. 
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Fig. S24  (a) Partial 1H (400 MHz) and (b) 31P-NMR (162 MHz) spectra of 1 and 
oligo(1) measured in CDCl3, and (c) their IR absorption spectra measured by the KBr 
pellet method.  
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Fig. S25  1H-NMR (400 MHz) spectra of 1 and oligo(1) measured in CDCl3 with TMS 
as an internal standard. 
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Fig. S26  (a) 1H-NMR spectra of oligo(2-3a)–oligo(2-3c) measured with TMS as an 
internal standard in CDCl3, and (b) IR absorption spectra of 2 and oligo(2-3a)–oligo(2-
3c) measured by the KBr method. 
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Fig. S27  IR (KBr) absorption spectra of 2 and oligo(2-3a)–oligo(2-3c). 
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Fig. S28  UV–vis absorption spectrum of 1 measured in CHCl3 (c = 3.0 µM). 

 

 
Fig. S29  Photoluminescence spectra of (a) 1, (b) oligo(2-3a), (c) oligo(2-3b) and (d) 
oligo(2-3c) measured in CHCl3 (c = 1.5 µM) excited at 440 nm. The intensity was 
normalized at 635 nm. 
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Fig. S30  Photoluminescence spectra of drop-casted films of (a) oligo(1), (b) oligo(2-
3a), (c) oligo(2-3b) and (d) oligo(2-3c) excited at 450 nm. The intensities were 
normalized at 495 nm. 
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Fig. S31  Fluorescence decay curves of (a) 1 (τF = 0.69 ns), (b) oligo(1) (τF = 0.41 ns), 
(c) oligo(2-3a) (τF = 0.94 ns), (d) oligo(2-3b) (τF = 1.30 ns) and (e) oligo(2-3c) (τF = 0.53 
ns) excited at 405 nm monitored at 480 nm measured in CHCl3 (c = 1.5 μM) under N2.  
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Fig. S32  Phosphorescence decay curves of (a) 1 (τP = 330 μs), (b) oligo(1) (τP = 262 μs), 
(c) oligo(2-3a) (τP = 317 μs), (d) oligo(2-3b) (τP = 336 μs) and (e) oligo(2-3c) (τP = 341 
μs) excited at 450 nm monitored at 640 nm measured in CHCl3 (c = 1.5 μM) under N2. 
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Fig. S33.1  Emission spectra of 1 measured in CHCl3 at various concentrations in the 
presence of DPA excited at 450 nm under N2, and the Stern-Volmer plots at 640 nm. The 
concentration of 1 was 5 µM, and those of DPA were 0, 15, 30, 60 and 120 µM. 
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Fig. S33.2  Emission spectra of oligo(1) measured in CHCl3 at various concentrations 
in the presence of DPA excited at 450 nm under N2, and the Stern-Volmer plots at 640 
nm. The concentration of oligo(1) was 5 µM, and those of DPA were 0, 15, 30, 60 and 
120 µM. 
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Fig. S33.3  Emission spectra of oligo(2-3a) measured in CHCl3 at various 
concentrations in the presence of DPA excited at 450 nm under N2, and the Stern-Volmer 
plots at 640 nm. The concentration of oligo(2-3a) was 5 µM, and those of DPA were 0, 
15, 30, 60 and 120 µM. 
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Fig. S33.4  Emission spectra of oligo(2-3b) measured in CHCl3 at various 
concentrations in the presence of DPA excited at 450 nm under N2, and the Stern-Volmer 
plots at 640 nm. The concentration of oligo(2-3b) was 5 µM, and those of DPA were 0, 
15, 30, 60 and 120 µM. 
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Fig. S33.5  Emission spectra of oligo(2-3c) measured in CHCl3 at various 
concentrations in the presence of DPA excited at 450 nm under N2, and the Stern-Volmer 
plots at 640 nm. The concentration of oligo(2-3c) was 5 µM, and those of DPA were 0, 
15, 30, 60 and 120 µM. 
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Simulated IR absorptions 

The IR absorption spectra of N–H and N–C3H7 models (Fig. S26) were simulated by DFT 

method using the ωB97XD functional and 6-31G* (C, H, N, O, P)-LANL2DZ (Pt) basis 

set to get information of IR absorptions assignable to two C=O stretching vibrations of 

cyclic imide moieties of 2 (Table S1). Prior to vibration calculation, the geometries were 

fully optimized using the same functional and basis set considering the effect of harmonic 

approximation. 

 

 

Fig. S34.  Chemical structures of N–H and N–C3H7 models. 

 

 

Table S1  IR absorptions of model compounds simulated by DFT 
method 

Compound 
C=O stretching vibration (cm-1) 

Symmetrical Unsymmetrical 
N–H model 1845 1841 

N–C3H7 model 1830 1795 
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Thermal properties 

The thermal stability of oligo(1) and oligo(2-3a)–oligo(2-3c) were analyzed by TGA and 

DSC as shown in Fig. S35 and listed in Table S2, respectively. All the oligomers did not 

lose weights at 50–300 °C. The 5% weight loss temperatures of oligo(2-3a)–oligo(2-3c) 

were 349–353 °C, which were higher than that of oligo(1) (338 °C). The weight residues 

at 500 °C of oligo(2-3a)–oligo(2-3c) were 79–81%, higher than that of oligo(1) (74%). 

The order of glass transition temperatures (Tg) was oligo(1) ≈ oligo(2-3c) < oligo(2-3b) 

< oligo(2-3a), which coincided with the chain length between Pt–acetylide complex 

moieties. Apparently, the presence of internal double bonds also affects the 

crystallinity,S4–S6 closely related with thermal properties. 

 

Fig. S35  TGA traces of oligo(1) and oligo(2-3a)–oligo(2-3c) measured at a heating rate 
= 10 °C/min under N2. 
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Table S2  TGA and DSC data of oligo(1) and oligo(2-3a)–oligo(2-3c) 
Oligomer Td5 a (°C) W500 °C b (%) Tg c (°C) 
Oligo(1) 338 74 116 

Oligo(2-3a) 353 81 182 
Oligo(2-3b) 349 80 176 
Oligo(2-3c) 351 79 119 

a 5% weight loss temperature. b Weight residue at 500 °C. c Glass 
transition temperature. 
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