Supplementary information for

Fluorine-driven amorphous solid-state polycondensation: Phosgene-free synthesis of high-molecular weight polycarbonate from fluorinated carbonate

Taihei Taniguchi^{a,b}, Naoko Shirota^b, Takashi Okazoe^{*,b}, Shin-ichi Matsuoka^a, Katsuhiro

Yamamoto^a, Masato Suzuki^{*,a}

^a Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya

Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan

b Yokohama Technical Center, AGC inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan

Corresponding Author: Masato Suzuki, Takashi Okazoe

E-mail: <u>m.suzuki.358@nitech.jp</u>

takashi.okazoe@agc.com

Figure S1. FT-IR spectrum of the polymer (entry 2, SSP5)
Figure S2. Expanded ¹ H NMR spectra (5.5–7.0 ppm) of the reaction mixture of the prepolymer syntheses with the different feed molar ratios of BHFC and BPA: (a) 1.00:1.00 (entry 1); (b) 1.05:1.00 (entry 2); and (c) 1.07:1.00 (entry 3)
Figure S3. ¹ H NMR spectrum of the reaction mixtures of the prepolymer synthesis (entry 2) before vacuum drying
Figure S4. ¹ H NMR spectra of the reaction mixtures of the prepolymer synthesis (entries 6 and 7)) after vacuum drying
Figure S5. A picture of the polymer (entry 2, SSP5)7
Figure S6. GPC profiles of the polymers (entry 2) from SSP1 to SSP57
Figure S7. ¹ H NMR spectrum of the reaction mixture after the SSP5 (entry 2)
Figure S8. GPC profiles of the polymers (entries 2, 6, and 7) after SSP5
Table S1. M_n and M_w values and residual catalyst contents at entries 2, 6, and 7 (Figure 3))9
Figure S9. TGA curve of the polymers (red line: entry 2, SSP5; black line: commercially available polycarbonate)
Figure S10. DSC profiles of the polymer (red line: entry 2, SSP5; black line: commercially available polycarbonate)
Figure S11. WAXD chart of the polymer (entry 2) after SSP1 and SSP5 and of commercially available polycarbonate
Figure S12. Images of the water droplets on the polymer films (entry 2) obtained by SSP2, 3, 4, and 511
Figure S13. Transmittance of the polymer film (entry2, SSP5)11
Figure S14. Conformation analysis of the mono HFIP-carbonate11
Figure S15. SAXS chart of the polymers of DP6 and 12 (entry 2)
Movie S1. Movie of the SSP started directly from heating at 180°C

Figure S1. FT-IR spectrum of the polymer (entry 2, SSP5)

Figure S2. Expanded ¹H NMR spectra (5.5–7.0 ppm) of the reaction mixture of the prepolymer syntheses with the different feed molar ratios of BHFC and BPA: (a) 1.00:1.00 (entry 1); (b) 1.05:1.00 (entry 2); and (c) 1.07:1.00 (entry 3)

Figure S3. ¹H NMR spectrum of the reaction mixtures of the prepolymer synthesis (entry 2) before vacuum drying

Figure S4. ¹H NMR spectra of the reaction mixtures of the prepolymer synthesis (entries 6 and 7)) after vacuum drying

Figure S5. A picture of the polymer (entry 2, SSP5)

Figure S6. GPC profiles of the polymers (entry 2) from SSP1 to SSP5

Figure S7. ¹H NMR spectrum of the reaction mixture after the SSP5 (entry 2)

Figure S8. GPC profiles of the polymers (entries 2, 6, and 7) after SSP5

Cat.	TBA			DMAP			DBU		
	M _n	$M_{ m w}$	Residual cat. (mol %)	M _n	$M_{ m w}$	Residual cat. (mol%)	$M_{ m n}$	$M_{ m w}$	Residual cat. (mol%)
SSP 1	4500	11,000	3.9	3800	9000	1.1	3600	8900	3.9
SSP 2	13,000	24,000	3.0	9000	23,000	0.08	9000	24,000	3.9
SSP 3	19,000	40,000	0.7	14,000	32,000	0	15,000	38,000	2.1
SSP 4	27,000	67,000	0.05	20,000	49,000	0	24,000	65,000	1.2
SSP 5	38,000ª	83,000	0	25,000	61,000	0	21,000	58,000	1.0

Table S1. M_n and M_w values and residual catalyst contents at entries 2, 6, and 7 (Figure 3))

^a $M_{\rm n}$ 35,000 calculated from the ¹H NMR spectrum

Figure S9. TGA curve of the polymers (red line: entry 2, SSP5; black line: commercially available polycarbonate)

Temparature(°C)

Figure S10. DSC profiles of the polymer (red line: entry 2, SSP5; black line: commercially available polycarbonate)

Figure S11. WAXD chart of the polymer (entry 2) after SSP1 and SSP5 and of commercially available polycarbonate.

Figure S12. Images of the water droplets on the polymer films (entry 2) obtained by SSP2, 3, 4, and 5

Figure S13. Transmittance of the polymer films (entry2, SSP5)

Figure S14. Conformation analysis of the mono HFIP-carbonate

The DFT calculation of the two representative conformations I-a and I-a' of the model HFIPterminated carbonate was performed to investigate the origin of the unique reactivity of the HFIPterminated carbonate. The calculation results indicated that conformation I-a was highly stable compared to I-a' ($\Delta G = +29.2$ kcal/mol). This energy difference was caused by the intramolecular hydrogen bond between the carbonyl oxygen (O₂) and the hydrogen of the HFIP moiety (H1) in I-a (H1-O₂: 2.21 Å). The highly electron-deficient proton atom H1 by the trifluoromethyl groups is a good hydrogen bond acceptor. This attractive interaction reflects the bond angle of C1–O1– C2. The I-a angle is smaller than that of I-a' (I-a: 116.7°, I-a': 120.7°). Another conformation I-a', in which the hydrogen atom H1 is distal from the carbonyl oxygen atom O₂, is disfavored because of the electronic repulsion between the fluorine atoms (F1 and F2) and oxygen O₂.

Figure S15. SAXS chart of the polymers of DP6 and 12 (entry 2)