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Characterization

FTIR spectra were collected on a Bruker Tensor 27 FTIR spectrophotometer with a resolution of 

4 cm-1 by using KBr disk method. 13C nuclear magnetic resonance (NMR) spectra were examined 

by using an INOVA 500 instrument with DMSO as the solvent and TMS as the external standard. 

Chemical shifts are reported in parts per million (ppm). The thermal stabilities of the samples were 

performed by using a TG Q-50 thermogravimetric analyzer under a N2 atmosphere; the cured 

sample (ca. 5 mg) was put in a Pt cell with heating rate of 20 °C min–1 from 100 to 800 °C under 

a N2 flow rate of 60 mL min-1. Wide-angle X-ray diffraction (WAXD) patterns were measured by 

the wiggler beamline BL17A1 of the National Synchrotron Radiation Research Center (NSRRC), 

Taiwan. A triangular bent Si (111) single crystal was used to get a monochromated beam having 

a wavelength (λ) of 1.33 Å. The morphologies of the polymer samples were examined by Field 

emission scanning electron microscopy (FE-SEM; JEOL JSM7610F) and also by transmission 

electron microscope  (TEM) using a JEOL-2100 instrument at an accelerating voltage of 200 kV. 

BET surface area and porosimetry measurements of samples (ca. 40–100 mg) were measured using 

BEL MasterTM/BEL simTM (v. 3.0.0). N2 adsorption and desorption isotherms were generated through 

incremental exposure to ultrahigh-purity N2 (up to ca. 1 atm) in a liquid N2 (77 K) bath. Surface 

parameters were calculated using BET adsorption models in the instrument’s software. The pore 

size of the prepared samples was determined by using nonlocal density functional theory 

(NLDFT).

Electrochemical Analysis

Working Electrode Cleaning: Prior to using, the glassy carbon electrode (GCE) was polished 

several times with 0.05-µm alumina powder, washed with EtOH after each polishing step, cleaned 
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through sonication (5 min) in a water bath, washed with EtOH, and then dried in the oven at 50 

oC.

Electrochemical Characterization: The electrochemical experiments were performed in a three-

electrode cell using an Autolab potentiostat (PGSTAT204) and 1 M KOH as the aqueous 

electrolyte. The GCE was used as the working electrode (diameter: 5.61 mm; 0.2475 cm2); a Pt 

wire was used as the counter electrode; Hg/HgO (RE-1B, BAS) was the reference electrode. All 

reported potentials refer to the Hg/HgO potential. A slurry was prepared by dispersing TPET-

Bimine CMP or PT-Bimine CMP or TPET-Im CMP or PT-Im CMP (2 mg), carbon black (2 mg), 

and Nafion (10 wt%) in a mixture of (EtOH/ H2O) (200 µL: 800 µL) and then sonicating for 1 h. 

A portion of this slurry (10 µL) was pipetted onto the tip of the electrode, which was then dried in 

air for 30 min prior to use. The electrochemical performance was studied through CV at various 

sweep rates (5–200 mV s–1) and through the GCD method in the potential range from 0 to -1.00 V 

(vs. Hg/HgO) at various current densities (0.5–20 A g–1) in 1 M KOH as the aqueous electrolyte 

solution.

The specific capacitance was calculated from the GCD data using the equation.

Cs = (I∆t)/(m∆V)                                                          

Where Cs (F g–1) is the specific capacitance of the supercapacitor, I (A) is the discharge current, 

ΔV (V) is the potential window, Δt (s) is the discharge time, and m (g) is the mass of the NPC on 

the electrode. The energy density (E, W h kg–1) and power density (P, W kg–1) were calculated 

using the equations.

E = 1000C(ΔV)2/(2  3600)
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P = E/(t/3600)

Electrochemical Analysis in Two-Electrode Symmetric Supercapacitor System

The slurry prepared by mixing TPET-Bimine CMP or PT-Bimine CMP or TPET-Im CMP or PT-

Im CMP, carbon black, and Nafion (10 wt. %) was coated onto a flexible Kuraray carbon paper 

(0.1 mm in thickness) with an effective area of 1 cm × 1 cm and then dried at 100 °C overnight in 

a vacuum oven. The mass loading of active material on the current collector was 0.8 mg cm‒2. The 

two working electrodes were separated with filter paper and infiltrated with potassium hydroxide 

(1 M) aqueous solution.

The specific capacitance was calculated from galvanostatic charge-discharge experiments using 

the following equation:

Cs = 2 x (I∆t)/(m∆V) 

Where Cs (F/g) is specific capacitance of the supercapacitor, I (A) is the discharge current, ΔV 

(V) is the potential window, Δt (s) is the discharge time, and m (g) is the mass of porous carbon 

on the one electrode. The energy density (E, Wh kg–1) and power density (P, W kg–1) were 

calculated using the equations.

E = 1000C(ΔV)2/(4 7.2)

P = E/(t/3600)
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Figure S1. FTIR spectrum of Bimine-Br2.
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Figure S2. 1H-NMR spectrum of Bimine-Br2.
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Figure S3. 13C-NMR spectrum of Bimine-Br2.
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Figure S4. TGA spectrum of Bimine-Br2.
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Figure S5. The placement of the bacterial solution on the agar plate after dilution and dropping.
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Figure S6. Corresponding XRD profiles of TPET-Bimine and PT-Bimine CMPs. 
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Figure S7. The redox reaction of N atom in TPET-Bimine and TPET-Im CMPs. 
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Figure S8. Electrochemical impedance spectrometry curves: (a) Nyquist plots and (b) equivalent 

fitted circuit, (c) Bode plot of frequency-dependent resistance (magnitude), and (d) Bode plot of 
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Figure S9. CV (a-d) and GCD (e-h) profiles of TPET-Bimine CMP (a, e), PT-Bimine CMP (b, f), 

TPET-Im CMP (c, g), and  PT-Im CMP (d, h) based on a symmetric coin cell.
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Figure S10. (a) Specific capacitance and (b) Ragone profile of TPET-Bimine CMP, PT-Bimine 

CMP, TPET-Im CMP and  PT-Im CMP based on a symmetric coin cell.
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Table S1. Comparison between the capacity values of TPET-Bimine CMP, PT-Bimine CMP, 
TPET-Im CMP, and PT-Im CMP with different reported data of three electrode supercapacitor 
materials.

Electrode Capacitance Ref.

TPET-Bimine CMP 34 F g–1 at 0.5 A g–1 This work

PT-Bimine CMP 37 F g–1 at 0.5 A g–1 This work

TPET-Im CMP 63 F g–1 at 0.5 A g–1 This work

PT-Im CMP 53 F g–1 at 0.5 A g–1 This work

Cz-Cz CMP 43.70 F g–1 at 0.5 A g–1 S1

Cz-TP CMP 67.38 F g–1 at 1 A g–1 S1

POSS-F-POIP 36.2 F g–1 at 0.5 A g–1 S2

H-THAQ 15 F g–1 at 1 A g–1 S3

THAQ/rGO (2:1) 76 F g–1 at 1 A g–1 S3

Pure AQ 42 F g–1 at 1 A g–1 S4

TPE-DDSQ-POIP 22 F g-1 at 1 A g-1 S5

Car-DDSQ-POIP 23 F g-1 at 1 A g-1 S5

OVS-A HPP 120 F g-1 at 0.5 A g-1 S6

OVS-P-A HPP 177 F g-1 at 0.5 A g-1 S6

Py-PDT POP 28 F g-1 at 0.5 A g-1 S7

TBN-BSU CMP 70 F g-1 at 0.5 A g-1 S8

Py-BSU CMP 38 F g-1 at 0.5 A g-1 S8

N- doped Porous carbons ropes 60 F g-1 at 1.0 A g-1 S9

TPE-FFC-CMP/CD-BZ 7.53 F g-1 at 0.5 A g–1 S10

TPE-FFC-CMP/poly (CD-BZ) 37.07 F g-1 at 0.5 A g–1 S10

Py-FFC-CMP/CD-BZ 10.15 F g-1 at 0.5 A g–1 S10

Py-FFC-CMP/poly (CD-BZ) 46 F g-1 at 0.5 A g–1 S10

HPC-0 48 F g-1 at 1 A g–1 S11
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An-Ph-Py CMP 83 F g–1 at 1 A g–1 S12

CoPc-CMP 13.8 F g-1 at 1 A g-1 S13

β -Ketoenamine-Linked
Covalent Organic Frameworks 

(COF)

48 F g-1  at 0. 1 A g-1 S14

TBN-Car-CMP 18.45 F g–1 at 0.5 A g-1 S15

TPE-Ph-Th CMP 39 F g–1 at 0.5 A g–1 S16

TPE-Ph-Tha CMP 51 F g–1 at 0.5 A g–1 S16

TPE-Ph-BSu CMP 52 F g–1 at 0.5 A g–1 S16

HOMCNSs 72.79 F g–1 at 0.5 A g–1 S17

An-CPOP-1 72.72 F g–1 at 0.5 A g–1 S18

An-CPOP-2 98.40 F g–1 at 0.5 A g–1 S18
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