Supporting Information for

A Direct Comparison Between Ring-Opening Copolymerization and Polycondensation to Produce Polyesters Using Poly(ethylene succinate) as An Example

Rui Xie,¹ Guan-Wen Yang,^{1*} Yao-Yao Zhang,¹ Chenjie Lu,^{1,2} Wei Li,³ Jingdai Wang,³ and Guang-Peng Wu^{1*}

¹MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

²College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China

³Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

*Corresponding author. Email: <u>yangguanwen@zju.edu.cn</u>, <u>gpwu@zju.edu.cn</u>

TABLE OF CONTENTS

Chemicals	2
Characterizations	2
Procedural Information	3
Synthesis of organoboron catalysts	3
Representative procedure for the ring-opening copolymerization (ROCOP) of EO and SA.	4
Representative procedure for polycondensation of EG and SAc.	4
References	8

Chemicals

Succinic anhydride (SA), ethylene glycol (EG), succinic acid (SAc), antimony triacetate (Sb(OCOCH₃)₃), tetrahydrofuran (THF), *n*-hexane, ethanol, dichloromethane (CH₂Cl₂), and chloroform (CHCl₃) were purchased from Sinopharm Chemical Reagent Co., Ltd., Energy Chemical Co., and Shanghai Titan Scientific Co., Ltd. Calcium hydride (CaH₂), *n*-butyllithium (*n*-BuLi) and deuterated solvents were purchased from Meryer Co. Ethylene oxide (EO) was received from Minxing Chemical Co. EO was stirred over CaH₂ at room temperature for 12 h in a Schlenk flask and vacuum transferred by trap-to-trap distillation into another Schlenk flask. SA was purified by sublimation under high vacuum. EG, SAc, and Sb(OCOCH₃)₃ were used without further purification. CDCl₃ was distilled over CaH₂ for 12 h and then stored over activated Davison 4 Å molecular sieves.

Characterizations

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AVANCE III 400 spectrometer (¹H NMR 400 MHz, ¹³C NMR 101 MHz) at 25 °C. ¹H NMR and ¹³C NMR spectra were referenced using the internal standard shifts or the residual solvent signals (¹H: TMS in CDCl₃ = 0 ppm; ¹³C: *C*DCl₃ = 77.16 ppm). Data are reported as follows: Chemical shift in ppm, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, etc.), coupling constant *J* in Hz, integration, and (where applicable) interpretation.

Gel permeation chromatography (GPC) was conducted on a system equipped with a Waters Chromatography, Inc. model 1515 isocratic pump, a model 2414 differential refractometer, and a two-column set of Polymer Laboratories, Inc. Styragel columns (PLgel 5 µmMixed C, 500 Å, and 104 Å, 300×7.5 mm columns).

The system was equilibrated at 35 °C in CHCl₃, which served as the elute solvent with a 1.00 mL/min flow rate. Calibration was done with a series of narrowly dispersed polystyrene (PS) standards to obtain apparent number average molar mass (M_n) and D of the polymers. Polymer solutions were prepared at a concentration of 10 mg/mL and an injection volume of 100 µL was used.

MALDI-TOF-MS analyses were performed on a Bruker Daltonics UltrafleXtreme system. Crude polymer samples were dissolved in CHCl₃ at a concentration of 10 mg·mL⁻¹. 2,5-Dihydroxybenzoic acid (DHB) was chosen as matrix and was added with a concentration of 40 mg·mL⁻¹. The resulting spectra were analyzed using the Bruker Daltonics flexAnalysis 3.4 software package.

Procedural Information

Synthesis of organoboron catalysts

[BBN-C₃-NⁿBuMe₂][Cl]

The synthesis procedure and characterization data were consistent with literature reports.¹

[BBN-C₃-NⁿBuMe₂][Br]

The synthesis procedure and characterization data were consistent with literature reports.¹

[BBN-C₃-NⁿBuMe₂][I]

The synthesis procedure and characterization data were consistent with literature reports.¹

[BBN-C₃-NEt₃][Br]

The synthesis procedure and characterization data were consistent with literature reports.²

BBN-C₄-NEt₃][Br]

The synthesis procedure and characterization data were consistent with literature reports.²

[BBN-C₅-NEt₃][Br]

The synthesis procedure and characterization data were consistent with literature reports.²

[BBN-C₆-NEt₃][Br]

The synthesis procedure and characterization data were consistent with literature reports.²

Representative procedure for the ring-opening copolymerization (ROCOP) of EO and SA.

A typical procedure of entry 2 in Table 1 is as follows. In a glovebox, SA (2.27 g, 22.7 mmol) and catalyst [BBN-C₃-N^{*n*}BuMe₂][Cl] (17 mg, 56.7 µmol) were weighed into a 10-mL vial equipped with magnetic stirrer. And then EO (1 g, 22.7 mmol) was vacuum transferred by trap-to-trap distillation into the vial. The vial was sealed and the polymerization was stirred at 80 °C in an aluminum bath for 3 hours. After then, the reaction was quenched by cooling to -10 °C and diluted with 3 mL CH₂Cl₂ or CHCl₃. And then a small part of the solution was taken out for the analysis of the conversion of SA by ¹H NMR spectrum. The resulting poly(ethylene succinate) was obtained by precipitation from ethanol for only once. Then the polymer was dried under vacuum at 50 °C overnight.

Representative procedure for polycondensation of EG and SAc.

A typical procedure of entry 1 in Table 2 is as follows. EG (2 g, 32.2 mmol) and Sb(OCOCH₃)₃ (48 mg, 0.161 mmol) were weighed into a 25-mL three-necked, round-bottomed flask equipped with magnetic stirrer. After Sb(OCOCH₃)₃ was completely dissolved under stirring, SAc (1.9 g, 16.1 mmol) was added. The reactor was heated to 200 °C and stirred in a nitrogen atmosphere for 1 hour. After then, the reactor was evacuated to low pressure (about 0.3-3 mmHg) and heated to 240 °C. After 2 hours, the temperature was further increased to 280 °C and low pressure was kept for 4 hours. Then, the reaction was quenched by cooling to -10 °C and diluted with 15 mL CH₂Cl₂ or CHCl₃. To obtain purified copolymer, 1M HCl/MeOH was added into the mixture and then precipitated from ethanol. This procedure was repeated for three times. Then the polymer was dried under vacuum at 50 °C overnight.

Table S1. ROCOP of EO and SA catalyzed by various mononuclear organoboron catalysts.

entry	Cat.	EO/SA/Cat.	T (°C)	t (h)	conv. (%) ^{<i>a</i>}	Ester (%) ^{a}	TOF (h ⁻¹)
1	[BBN-C ₃ -N ⁿ BuMe ₂][Cl]	400/400/1	80	3	58	>99	77
2	[BBN-C ₃ -N ⁿ BuMe ₂][Br]	400/400/1	80	3	38	>99	51
3	[BBN-C ₃ -N ⁿ BuMe ₂][I]	400/400/1	80	3	31	>99	41
4	[BBN-C ₃ -NEt ₃][Br]	400/400/1	80	3	41	>99	55
5	[BBN-C ₄ -NEt ₃][Br]	400/400/1	80	3	39	>99	52
6	[BBN-C ₅ -NEt ₃][Br]	400/400/1	80	3	43	>99	57
7	[BBN-C ₆ -NEt ₃][Br]	400/400/1	80	3	40	>99	54
8	[Bora-C5-N"Bu3][Br]	400/400/1	80	3	59	>99	78

^aConv. (%) is the conversion of the SA and ester (%) is the percentage of ester linkage in the polymer, which were both determined by ¹H NMR spectroscopy.

Figure S1. (a) ¹H NMR and (b) ¹³C NMR of of the pure product of the ROCOP of EO and SA (entry 3 in Table 1).

Figure S2. The MALDI-TOF MS spectrum of obtained PES from ROCOP of EO and SA using [BBN-C₃-NⁿBuMe₂][Cl] catalyst. (Table 1, entry 2).

Figure S3. DSC curves for the PES obtained from polycondensation of EG and SAc (red : Table 2, entry 1; blue : Table 2, entry 2; green : Table 2, entry 3).

References

1. Zhang, Y. Y.; Yang, G. W.; Xie, R.; Yang, L.; Li, B.; Wu, G. P. Scalable, Durable, and Recyclable Metal-Free Catalysts for Highly Efficient Conversion of CO₂ to Cyclic Carbonates. *Angew Chem Int Ed Engl* **2020**, *59*, 23291-23298.

2. Yang, G. W.; Zhang, Y. Y.; Xie, R.; Wu, G. P. Scalable Bifunctional Organoboron Catalysts for Copolymerization of CO₂ and Epoxides with Unprecedented Efficiency. *J. Am. Chem. Soc.* **2020**, *142*, 12245-12255.