Electronic Supplementary Information

Bio-based, Random Terpolymers with Defined

Functionality Based on Poly(limonene carbonate-

ran-menth-1-ene carbonate)

Marcel Höferth,^a Holger Schmalz,^a Andreas Greiner^{a*}

a) University of Bayreuth, Macromolecular Chemistry and Bavarian Polymer Institute,

Universitätsstraße 30, 95440 Bayreuth, Germany.

E-mail: andreas.greiner@uni-bayreuth.de

Fig. S1 ¹H NMR spectra for determining monomer conversion during terpolymerization of LimO, Men1O and CO₂ at various reaction times. The integral of the proton signal **f** at 3.0ppm is divided by the sum of the integrals of **f** and **a**. The result is then subtracted from 100%.

Fig. S2 Kinetics of the terpolymerization of LimO, Men1O and CO_2 with equimolar amounts of LimO and Men1O at room temperature. 10% conversion was reached after 6 h. A short lag time might occur due to CO_2 needing time to dissolve into the reaction mixture.

Fig. S3 ¹H NMR spectra of P(LimC-*ran*-Men1C) terpolymers with varying LimC content in CDCl₃.

Fig. S4. Thermogravimetric analysis (TGA) of P(LimC-*ran*-Men1C) terpolymers with varying LimC content (N_2 , heating rate 10 K min⁻¹).

Fig. S5 Differential scanning calorimetry (DSC) analysis of P(LimC-*ran*-Men1C) terpolymers with varying LimC content (heating rate 40 K min⁻¹, second heating traces). The DSC traces were shifted vertically for means of clarity.

Non-linear least square (NLLS) method

The copolymer equation of Mayo and Lewis, that gives the composition of a copolymer formed in dependence of the monomer concentrations in the feed, can be written as follows with

$$f = \frac{m_1}{m_2} \qquad F = \frac{[M_1]}{[M_2]}$$
. [M₁] and [M₂] are the monomer concentrations in solution and m_1/m_2

is the molar ratio of the monomer units in the copolymer:

$$F_1 = 1 - F_2 = \frac{r_1 f_1^2 + f_1 f_2}{r_1 f_1^2 + 2f_1 f_2 + r_2 f_2^2}$$
(1)

With $f_2 = (1 - f_1)_{:}$

$$F_{1} = \frac{r_{1}f_{1}^{2} + f_{1}(1 - f_{1})}{r_{1}f_{1}^{2} + 2f_{1}(1 - f_{1}) + r_{2}(1 - f_{1})^{2}}$$
(2)

This is then used to fit the plotted values of f_1 and F_1 . The reactivity ratios, r, were then taken from the fitting results.

Fig. S6 NLLS plot for the terpolymerization of LimO (M_1) and Men1O (M_2) with CO₂.

Fig. S7. ATR FT-IR spectra of PMen1C compared to 100% OH-functionalized PMen1C-OH. The O-H stretching vibration is clearly visible at 3400 cm⁻¹.