Supporting Information

Hydrogen bonded azine as building block for π-conjugated polymers and their semiconducting properties

Kunrong Li, ${ }^{\ddagger a}$ Hezhe Zhang, ${ }^{\ddagger b}$ Cheng Chang, ${ }^{\ddagger c}$ Kaiwen Lin, ${ }^{\text {d }}$ Bo Zhang, ${ }^{\text {a }}$ Zaifei Ma, ${ }^{\star b}$ Dacheng Wei ${ }^{* c}$ and Qing Zhang*a
${ }^{\text {a }}$ Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China. E-mail: qz14@sjtu.edu.cn
${ }^{b}$ State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620,China. E-mail: mazaifei@dhu.edu.cn
${ }^{\text {cState Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, }}$ Fudan University, Shanghai 200433, China. E-mail: weidc@fudan.edu.cn ${ }^{d}$ Department of Materials and Food, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China.
*These authors contributed to this work equally.

Table of Contents

Materials and Characterization2
Organic photovoltaic (OPV) device fabrication and measurement 3
Organic Field-Effect Transistor (OFET) device fabrication and measurement 4
Synthesis of Monomer and Polymers. 5
Crystallographic data 13
Theoretical calculation of P1 and P2 15
Thermal properties 16
Absorption spectrum 16
Device performance of OPV and OFET 16
2D Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) data 17
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MALDI-MS Spectrum 18
References 29

Materials and Characterization

Materials

The regents were purchased from Adamas, Sigma-Aldrich, J\&K Scientific, Bide Pharmatech, SunaTech and Derthon. All chemicals were reagent grade and used as received. Tetrahydrofuran (THF) was freshly distilled over sodium wires and benzophenone prior to use. The ($1 E, 2 E$)-1,2-bis(thiophen-2-ylmethylene)hydrazine (Az) and (1E,2E)-1,2-bis((5-bromothiophen-2-yl)methylene)hydrazine (Az-Br) were synthesized according to the literature. ${ }^{1}$ (2,2'-((2Z,2'Z)-((12,13-Bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo-[3,4-e]thieno[2," $\left.3^{\prime \prime}: 4^{\prime} 5^{\prime}\right]$ thieno $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ -pyrrolo[3,2-g]thieno[2', $\left.3^{\prime}: 4,5\right]$ thieno[3,2-b]indole-2,10-diyl)bis(methanyl ylidene))-bis(5,6-di-fluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalono-nitrile (Y6) was purchased from Solarmer Materials Inc.

Characterization

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker 400 MHz spectrometer with tetramethylsilane (TMS) as an internal reference at room temperature. Matrixassisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was carried on a Bruker Daltonics. Elemental analyses were carried on an Elementar Vario EL Cube system. The single Crystal X-ray diffraction analysis was performed on a Bruker D8 VENTURE X-ray diffractometer. UV-vis spectra were obtained with a Perkin Elmer Lambda 20 UV-vis spectrophotometer. Cyclic voltammetry (CV) was carried on a CHI600 electrochemical workstation in a deoxygenated anhydrous acetonitrile solution of tetra-butylammonium hexafluorophosphate (n - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$) (0.10 $\mathrm{M})$ at the scan rate of 100 mV s -1 under nitrogen. A platinum, an $\mathrm{Ag} / \mathrm{Ag}^{+}\left(\mathrm{AgNO}_{3}, 0.01\right.$ M in acetonitrile) electrode, and a platinum disk electrode were used as the counter electrode, reference electrode and working electrode, respectively. Before and after measuring the samples, the cell was calibrated with the ferrocene/ferrocenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) redox couple (4.8 eV below vacuum level) as an external standard which was measured under the same conditions. Polymer films were coated on the surface of the platinum disk. Gel permeation chromatography (GPC) analyses of polymers were carried out on
a Waters HPLC with a polystyrene gel column (Agilent PL gel $5 \mu \mathrm{~m}$, MIXEDC) at room temperature. A PerkinElmer Pyris 1 was used for thermogravimetric analyses (TGAs) at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under nitrogen. Differential scanning calorimetry (DSC) analysis was carried out on a Netzsch Instruments DSC 204 F1 at a scan rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under nitrogen. The sample of $\mathbf{P 1}$ and $\mathbf{P 2}$ was heated to $200^{\circ} \mathrm{C}$ and was held for 2 min to remove thermal history, followed by cooling to $20^{\circ} \mathrm{C}$ and then by heating to $200^{\circ} \mathrm{C}$. The sample of $\mathbf{P 3}$ was heated to $350^{\circ} \mathrm{C}$ and was held for 2 min to remove thermal history, followed by cooling to $20^{\circ} \mathrm{C}$ and then by heating to $350^{\circ} \mathrm{C}$. The atomic force microscopy (AFM) images of thin films were taken on a Bruker JPK atomic force microscope. Grazing-incidence wide-angle X-ray scattering (GIWAXS) stydy were carried out at the beamline 14B1 of Shanghai Synchrotron Radiation Facility (SSRF).

Organic photovoltaic (OPV) device fabrication and measurement

The structure of solar cell devices was ITO/PEDOT:PSS/P1:Y6/PFN-Br/Ag. After cleaning and sonicating the ITO substrates, PEDOT:PSS (Al4083 from Hareus) was spin-cast onto the substrates at 5000 rpm for 30 s , and then dried at $150^{\circ} \mathrm{C}$ for 15 min in N_{2} atmosphere. The P1:Y6 (1:1.2 w/w) was dissolved in chloroform (the total concentration of blends was $14 \mathrm{mg} \mathrm{mL}^{-1}$) with 1-chloronaphthalene ($0.5 \mathrm{wt} . \%$) as additive. The P1:Y6 solution was spin-cast at 3500 rpm for 30 s onto PEDOT:PSS film followed by a temperature annealing of $100^{\circ} \mathrm{C}$ for 10 min . A thin PFN-Br layer (0.5 $\mathrm{mg} / \mathrm{mL}$ in methanol and $0.5 \% \mathrm{vol} \%$ glacial acetic acid, 3000 rpm) was coated on the active layer, followed by the deposition of Ag (evaporated under $6 \times 10^{-6} \mathrm{~Pa}$ through a shadow mask). The effective device area was $4.0 \mathrm{~mm}^{2}$ defined by shallow masks. The current density-voltage ($J-V$) curves of devices were measured using a Keithley 2400 system in the N_{2}-filled glovebox under AM $1.5 \mathrm{G}\left(100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}\right)$ using an Enlitech solar simulator. The EQE spectra were measured using a QE-R Solar Cell Spectral Response Measurement System (Enli Technology Co., Ltd.). The light intensity at each wavelength was calibrated using a standard monocrystalline Si photovoltaic cell.

Organic field-effect transistor (OFET) device fabrication

An n-type heavily doped Si wafer with a $300-\mathrm{nm} \mathrm{SiO}_{2}$ layer (capacitance $=10 \mathrm{nF}$ cm^{-2}) was used as a bottom-gate electrode and dielectric layer. To fabricate BGBC structured OTFTs, $5 / 50-\mathrm{nm}$-thick $\mathrm{Cr} / \mathrm{Ag}$ layers were thermally evaporated on the pristine $\mathrm{SiO}_{2} / \mathrm{Si}$ substrates through the photolithography process as bottom S / D electrodes (W/L $=3753 / 82 \mu \mathrm{~m}$). During the photolithography, the S1813 photoresist was liftoff by the stripper Remove PG and the substrate with S/D electrodes was ultrasonic cleaned with heptane, ethanol, acetone, and chloroform. The cleaned substrate with electrodes was treated with OTS in a vacuum oven at a temperature of $120^{\circ} \mathrm{C}$, forming an OTS self-assembled monolayer, and then sonicated in heptane, ethanol, and chloroform to remove extra OTS molecules. The π-conjugated polymer was deposited on the OTS treated $\mathrm{Si} / \mathrm{SiO}_{2}$ substrates by spin-coating from its chloroform solution ($5 \mathrm{mg} \mathrm{mL}^{-1}$). The electrical characteristics of the OFET devices were measured by a Keithley 4200 semiconductor analyzer in ambient condition. The field-effect mobility is calculated in the saturation regime by the following equation:

$$
\mu=\frac{2 L}{W C_{i}}\left(\frac{\partial \sqrt{I_{D}}}{\partial V_{G}}\right)^{2}
$$

where I_{D} is the drain-source current, μ is the field-effect mobility, W is the channel width, L is the channel length, C_{i} is the capacitance per unit area of the gate dielectric layer, V_{G} is the gate voltage.

Scheme S1. The synthesis of intermediates and monomers.

Synthesis of monomers and polymers

Synthesis of 2-hexyldecyl (5-bromothiophen-3-yl)carbamate (1). It was synthesized according to literature. ${ }^{2}$ 5-bromothiophene-3-carboxylic acid ($5.00 \mathrm{~g}, 24.15 \mathrm{mmol}$), diphenyl phosphorazidate (DPPA) ($8.64 \mathrm{~g}, 31.39 \mathrm{mmol}$), 2-hexyldecan-1-ol (5.86 g , 24.15 mmol) and triethylamine ($4.89 \mathrm{~g}, 48.30 \mathrm{mmol}$) were dissolved in anhydrous tetrahydrofuran (50.0 mL). The mixture was refluxed overnight under nitrogen. After cooling down to room temperature, the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (35:1) as the eluent to give compound $\mathbf{1}(4.31 \mathrm{~g}, 40 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.06$ (d, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 1 \mathrm{H}), 1.29(\mathrm{~m}, 24 \mathrm{H}), 0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta 153.85,135.61,123.73,111.99,109.17,68.45,37.67,32.02,31.94,31.26$, 30.10, 29.76, 29.69, 29.45, 26.82, 26.79, 22.80, 22.78, 14.24, 14.23.

Synthesis of 2-hexyldecyl (5-bromo-2-formylthiophen-3-yl)carbamate (2). Diisopropylamine ($1.81 \mathrm{~g}, 17.92 \mathrm{mmol}$) and n-butyllithium ($7.2 \mathrm{~mL}, 2.5 \mathrm{M}, 17.92$ $\mathrm{mmol})$ were added to anhydrous tetrahydrofuran $(30.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under nitrogen to prepare lithium diisopropyl amide (LDA). After stirring for 1 h , a solution of compound $\mathbf{1}(4.00 \mathrm{~g}, 8.96 \mathrm{mmol})$ in anhydrous tetrahydrofuran $(20.0 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$. After stirring for another 1 h , piperidine-1-carbaldehyde ($2.03 \mathrm{~g}, 17.92 \mathrm{mmol}$) was added to the mixture, and the reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Then, the reaction was warmed to room temperature and stirred for 2 h . Subsequently, the mixture was poured into water (50 mL), and acidified with aqueous hydrochloric acid solution $(1.0 \mathrm{M})$, then the mixture was extracted with dichloromethane for three times. The organic phase was dried over anhydrous sodium sulfate. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (35:1) as the eluent to give compound 2 $(2.47 \mathrm{~g}, 58 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 9.51(\mathrm{~s}, 1 \mathrm{H})$, $8.01(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 24 \mathrm{H}), 0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 182.27,153.29,145.00,125.59,120.87,69.12,37.61$, $32.00,31.92,31.15,31.13,30.03,29.70,29.67,29.42,26.80,26.77,22.79,22.77$, 14.23, 14.21

Synthesis of 2-ethylhexyl (2-formylthiophen-3-yl)carbamate (3). Compound $\mathbf{3}$ was prepared by a similar synthetic procedure to 2. 2-Ethylhexyl thiophen-3-ylcarbamate
($1.70 \mathrm{~g}, 6.66 \mathrm{mmol}$) and anhydrous THF (20.0 mL) were added into a dry Schlenk bottle at $-78^{\circ} \mathrm{C}$ under nitrogen. After stirring a few minutes, n-butyllithium ($5.3 \mathrm{~mL}, 2.5 \mathrm{M}$, 13.31 mmol) was slowly added, and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1 h under nitrogen. Subsequently, anhydrous N, N-dimethylformamide ($0.97 \mathrm{~g}, 13.31 \mathrm{mmol}$) was quickly added into the reaction. After stirring for 1 h , the mixture was warmed to room temperature and was further stirred for 2 h . The mixture was poured into water (50 mL), and acidified with aqueous hydrochloric acid solution (1.0 M), then extracted with dichloromethane for three times. The organic phase was dried over anhydrous sodium sulfate. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (30:1) as the eluent to give compound 3 ($1.53 \mathrm{~g}, 81 \%$) as a pale-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.93(\mathrm{~s}, 1 \mathrm{H}), 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.79,153.45,145.30,136.10,122.09,119.79,68.42,38.97,30.27$, 28.98, 23.64, 23.03, 14.12, 11.01 .

Synthesis of N-(2-ethylhexyl)thiophene-3-carboxamide (4). It was synthesized according to literature. ${ }^{3}$ In an oven-dried 2-neck round bottom flask, thiophene-3carboxylic acid ($5.00 \mathrm{~g}, 39.02 \mathrm{mmol}$) was dissolved in anhydrous dichloromethane (50 mL) and anhydrous dimethylformamide (2.5 mL) under nitrogen atmosphere. After cooling to $0^{\circ} \mathrm{C}$, oxalyl chloride $(9.90 \mathrm{~g}, 78.04 \mathrm{mmol})$ was dropwise via syringe. Then, ice bath was removed and the mixture was stirred overnight. The mixture was concentrated under reduced pressure to remove oxalyl chloride and dichloromethane. The resulting yellow solid was re-dissolved in anhydrous dichloromethane (50 mL), a solution of 2-ethyl-1-hexylamine ($12.61 \mathrm{~g}, 97.55 \mathrm{mmol}$) and triethylamine $(9.87 \mathrm{~g}$, 97.55 mmol) were added dropwise under ice-bath. The mixture was allowed to stir overnight, and then it was poured in water and extracted with dichloromethane three
times. The combined organic layer was washed with water, dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was further purified via column chromatography on silica gel using hexanes/ethyl acetate (8:2) to give compound $\mathbf{4}$ as a pale-yellow solid ($2.82 \mathrm{~g}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85$ $(\mathrm{m}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}$, $8 \mathrm{H}), 0.92(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 163.34, 137.97, 127.94, 126.51, $126.11,42.81,39.60,31.18,29.01,24.41,23.13,14.19,11.01$.

Synthesis of N-(2-ethylhexyl)-2-formylthiophene-3-carboxamide (5). An anhydrous THF (30.0 mL) solution of compound $4(1.50 \mathrm{~g}, 6.27 \mathrm{mmol})$ was added to a dry flask under nitrogen atmosphere. The solution was cooled to $-78^{\circ} \mathrm{C}$ and n-butyl lithium (5.0 $\mathrm{mL}, 2.5 \mathrm{M}, 12.53 \mathrm{mmol}$) was added dropwise. After stirring for 2 h , anhydrous dimethylformamide ($0.92 \mathrm{~g}, 12.53 \mathrm{mmol}$) was added. After stirring at $-78^{\circ} \mathrm{C}$ for another 1 h , the mixture was warmed to room temperature and stirred for 2 h . The mixture was poured into water (50 mL), and acidified with aqueous hydrochloric acid solution (1.0 M), then extracted with dichloromethane. The organic phase was dried over anhydrous NaSO_{4}. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (5:1) as the eluent to give compound $5(0.84 \mathrm{~g}, 50 \%)$ as a pale-yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.08(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~m}, 8 \mathrm{H}), 0.95(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.90,161.66,142.08,141.62,134.44,132.24,42.95,39.38,31.22$, 29.01, 24.49, 23.13, 14.21, 11.06.

Synthesis of bis(2-hexyldecyl) (((1E,1'E)-hydrazine-1,2-diylidenebis(methaneyly-lidene))bis(5-bromothiophene-2,3-diyl))dicarbamate (Az2-Br). Monomer Az2-Br was synthesized according to literature. ${ }^{4-6}$ Compound $2(1.90 \mathrm{~g}, 4.00 \mathrm{mmol})$ was dissolved in absolute ethanol (10.0 mL). Hydrazine hydrate ($0.10 \mathrm{~g}, 80 \%$, 2.01 mmol) in ethanol solution (5.0 mL) was added dropwise, and then 2 drops of acetic acid were added to the solution. After stirring for a few minutes, the solution turned yellow and solid precipitated. The reaction was stirred at room temperature for 4 h . The precipitate was filtrated, and washed with ethanol for several times. The product was purified by recrystallization in mixed solvent of ethanol and chloroform to give the titled compound $(1.04 \mathrm{~g}, 55 \%)$ as a yellow powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.29(\mathrm{~s}, 2 \mathrm{H}), 8.40$ (s, 2H), $7.96(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.72(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{~m}, 48 \mathrm{H}), 0.88(\mathrm{~m}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.16, 153.51, 140.82, 125.67, 119.15, 116.07, 69.04, 37.67, 32.05, 31.96, 31.48, 30.19, 29.83, 29.74, 29.50, 26.91, 26.86, 22.84, 22.82, 14.27, 14.26. HRMS MALDI-TOF: m / z calcd for $\mathrm{C}_{44} \mathrm{H}_{72} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}, 945.3375$; found, 945.3427.

Synthesis of bis(2-ethylhexyl) (((1E, 1'E)-hydrazine-1,2-diylidenebis(methaneyly-lidene))bis(thiophene-2,3-diyl))dicarbamate (Az1). The same procedure described for the synthesis of $\mathbf{A z 2}-\mathbf{B r}$ was followed. 2-Ethylhexyl(5-bromo-2-formylthiophen-3yl) carbamate ${ }^{2}$ (3) ($1.14 \mathrm{~g}, 4.02 \mathrm{mmol}$), hydrazine hydrate ($80 \%, 0.10 \mathrm{~g}, 2.01 \mathrm{mmol}$)
and ethanol (10.0 mL) were used. The product was purified by recrystallization in mixed solvent of ethanol and chloroform to give the titled compound $(0.79 \mathrm{~g}, 70 \%)$ as a bright yellow powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.35(\mathrm{~s}, 2 \mathrm{H}), 8.57(\mathrm{~s}, 2 \mathrm{H}), 7.92$ (s, 2H), 7.49 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.14$ (d, $J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.72$ (m, 2H), 1.46 (m, 16H), 0.97 (m, 12 H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.28,153.76,141.12,130.74,122.41$, 115.01, $68.43,39.09,30.61,29.06,24.03,23.15,14.24,11.24$. HRMS MALDI-TOF: m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}, 563.2681$; found, 563.2740.

Synthesis of 2,2'-((1E, 1'E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(N-(2-ethylhexyl)thiophene-3-carboxamide) (Az3). The same procedure described for the synthesis of Az1. N-(2-ethylhexyl)-2-formylthiophene-3-carboxamide (5) (0.50 g , $1.87 \mathrm{mmol})$, hydrazine hydrate $(80 \%, 0.10 \mathrm{~g}, 2.01 \mathrm{mmol})$ and ethanol $(10 \mathrm{~mL})$ were used. The product was purified by recrystallization in mixed solvent of ethanol and chloroform to give the titled compound ($0.36 \mathrm{~g}, 72 \%$) as bright yellow needle-like solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.22(\mathrm{~s}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35 \mathrm{f}(\mathrm{d}, J=5.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~m}, 16 \mathrm{H}), 0.95(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 163.16, 156.05, 139.89, 138.86, 129.71, 128.60, 43.07, 39.53, 31.28, 29.02, 24.50, 23.19, 14.23, 11.03. HRMS MALDI-TOF: m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}, 531.2783$; found, 531.2815 .

Synthesis of polymer P1.

Az2-Br ($0.095 \mathrm{~g}, 0.10 \mathrm{mmol}$), (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5b^{\prime}]dithiophene-2,6-diyl)bis(trimethylstannane) (BDT) $(0.097 \mathrm{~g}, 0.10 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $(0.002 \mathrm{~g}, 0.002 \mathrm{mmol})$ and $\mathrm{P}(o-\text { tol })_{3}(0.003 \mathrm{~g}, 0.084 \mathrm{mmol})$ and degassed anhydrous toluene (6.0 mL) were added to a Schlenk flask. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the mixture was precipitated in methanol and was filtered. The residue was washed with methanol, n-hexane, dichloromethane under nitrogen in a Soxhlet extractor. The polymer was dissolved and concentrated in the chloroform, and was precipitated with methanol and filtered to give $\mathbf{P 1}(0.127 \mathrm{~g}, 87 \%)$ as a dark purple solid. $M_{\mathrm{n}}=160.1 \mathrm{kDa} ; M_{\mathrm{w}}=488.6 \mathrm{kDa} ; \mathrm{PDI}=3.1$. Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{118} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{6}$: C 69.10, H 8.73, N 3.54; Found: C 69.02, H 8.54, N 3.54 .

Synthesis of polymer P2.

Polymer P2 was synthesized by a similar experimental procedure as P1. Az2-Br (0.095 g, 0.10 mmol), 2,5-bis(2-butyloctyl)-3,6-bis(5-(trimethylstannyl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP) ($0.091 \mathrm{~g}, 0.10 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.002$ $\mathrm{g}, 0.002 \mathrm{mmol})$ and $\mathrm{P}(o-\mathrm{tol})_{3}(0.003 \mathrm{~g}, 0.084 \mathrm{mmol})$ and anhydrous toluene $(6.0 \mathrm{~mL})$ were used. The polymer $\mathbf{P 2}(0.126 \mathrm{~g}, 90 \%)$ was a dark green solid. $M_{\mathrm{n}}=66.0 \mathrm{kDa} ; M_{\mathrm{w}}$ $=226.9 \mathrm{kDa} ;$ PDI $=3.4$. Anal. Calcd for $\mathrm{C}_{84} \mathrm{H}_{132} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{4}:$ C 69.25, H 9.23, N 5.67; Found: C 69.57, H 9.17, N 5.79.

Synthesis of polymer P3.

Polymer P3 was synthesized by a similar experimental procedure as P1. Az-Br ${ }^{1}$ ($0.049 \mathrm{~g}, ~ 0.13 \mathrm{mmol}$), (4,8-bis(5-(2-octyldodecyl)thiophen-2-yl)benzo[1,2-b:4,5b^{\prime} ']dithiophene-2,6-diyl)bis(trimethylstannane) ($0.162 \mathrm{~g}, 0.13 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.002$ $\mathrm{g}, 0.002 \mathrm{mmol})$ and $\mathrm{P}(o-\mathrm{tol})_{3}(0.003 \mathrm{~g}, 0.084 \mathrm{mmol})$ were added in degassed anhydrous toluene (6 mL) under nitrogen. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 72 h . The polymer P3 $(0.127 \mathrm{~g}, 84 \%)$ was a dark purple solid. $M_{\mathrm{n}}=36.2 \mathrm{kDa} ; M_{\mathrm{w}}=110.6 \mathrm{kDa} ; \mathrm{PDI}=3.1$. Anal. Calcd for $\mathrm{C}_{70} \mathrm{H}_{100} \mathrm{~N}_{2} \mathrm{~S}_{6}$: C 72.28, H 8.65, N 2.32; Found: C 72.36, H 8.68, N 2.41.

Crystallographic data

Table S1. Crystal data and structure refinement for Az2.

Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$
Formula weight	562.77
Temperature	$173(2) \mathrm{K}$
Wavelength	1.54178 A
Crystal system, space group	Triclinic, $\mathrm{P}-1$
Unit cell dimensions	$\mathrm{a}=5.0119(4) \mathrm{A}$ alpha $=101.744(5) \mathrm{deg}$. $\mathrm{b}=10.5046(8) \mathrm{A}$ beta $=99.652(5) \mathrm{deg}$. $\mathrm{c}=14.7245(13) \mathrm{A}$ gamma $=96.654(4) \mathrm{deg}$.
Volume	$739.15(11) \mathrm{A}^{\wedge} 3$
Z, Calculated density	$1,1.264 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$1.947 \mathrm{~mm} \wedge-1$
F(000)	302
Crystal size	$0.160 \times 0.140 \times 0.120 \mathrm{~mm}$
Theta range for data collection	3.126 to 66.642 deg.
Limiting indices	$-5<=\mathrm{h}<=5,-12<=\mathrm{k}<=11,-17<=1<=17$
Reflections collected $/$ unique	$6767 / 2509[\mathrm{R}($ int $)=0.0725]$
Completeness to theta	$66.642 \quad 96.4 \%$
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7531 and 0.5301
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	$2509 / 0 / 177$
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.102
Final R indices [I>2sigma(I) $]$	$\mathrm{R} 1=0.1326, \mathrm{wR2}=0.3773$
R indices (all data)	$\mathrm{R} 1=0.1703, \mathrm{wR2}=0.4003$
Extinction coefficient	n / a
Largest diff. peak and hole	1.233 and -0.490 e. $\mathrm{A}^{\wedge}-3$

Table S2. Selected bond distances and torsion angles for compound Az2.

Bond type	Bond length (\AA)	Torsion angles $\left({ }^{\circ}\right)$
$\mathrm{N}(1)=\mathrm{C}(5)$	$1.281(11)$	
$\mathrm{N}(1)-\mathrm{N}(1 \mathrm{~A})$	$1.378(12)$	
$\mathrm{N}(1) \cdots \mathrm{H}$	$2.2230(889)$	
$\mathrm{N}(1) \cdots \mathrm{N}(2)$	$2.8701(85)$	
$\mathrm{N}(2)-\mathrm{H}$	$0.7930(998)$	
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	$1.281(11)$	
$\mathrm{N}(1 \mathrm{~A}) \cdots \mathrm{H}$	$2.2230(889)$	
$\mathrm{N}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$	$2.8701(85)$	
$\mathrm{N}(2 \mathrm{~A})-\mathrm{H}$	$0.7930(998)$	$179.097(669)$
$\mathrm{S}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$		$-179.097(669)$
$\mathrm{S}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$		$180.000(745)$
$\mathrm{C}(5)=\mathrm{N}(1)-\mathrm{N}(1 \mathrm{~A})=\mathrm{C}(5 \mathrm{~A})$		

Table S3. Summary of X-ray crystallographic results of two single crystals.

	Structure	Packing motif	Packing motif picture	Bond length (A)	
				$\mathrm{C}=\mathrm{N}$	$\mathbf{N}-\mathbf{N}$
Previous reports		Slipped herringbone packing		$\begin{aligned} & 1.280 \\ & 1.281 \end{aligned}$	$\begin{aligned} & 1.402, \\ & 1.412 \end{aligned}$
This work	Az1	Lamellar packing	 	1.281	1.378

Theoretical calculation of P1 and P2

Figure S1. Calculated molecular geometries and frontier molecular orbitals of P1 trimers at B3LYP-D3/6-31G(d) level.

Figure S2. Calculated molecular geometries and frontier molecular orbitals of P2 trimers at B3LYP-D3/6-31G(d) level.

Thermal properties of polymers

Figure S3. The (a) TGA and (b) DSC curves of P1, P2 and P3.

Absorption spectra of polymers

Figure S4. Absorption spectra of polymer solutions at room temperature (a) P1, (b) P2 and (c) P3.

Performances of OPV and OFET devices

Table S4. Device performances of the P1:Y6 based solar cells fabricated with different D/A ratios (with 0.5% of CN).

Solvent	D: A	$\boldsymbol{V}_{\text {oc }}(\mathbf{V})$	$\boldsymbol{J}_{\text {sc }}\left(\mathbf{m A ~ c m}^{-2}\right)$	FF (\%)	PCE (\%)
	$1: 1$	$0.82(0.80 \pm 0.03)$	$19.4(19.1 \pm 0.4)$	$42.3(41.2 \pm 1.1)$	$6.5(6.3 \pm 0.3)$
CF	$1: 1.2$	$0.87(0.84 \pm 0.04)$	$20.0(19.5 \pm 0.6)$	$53.0(50.8 \pm 2.2)$	$8.2(8.1 \pm 0.2)$
	$1: 1.5$	$0.85(0.82 \pm 0.04)$	$19.0(18.8 \pm 0.5)$	$47.4(46.6 \pm 0.8)$	$7.6(7.5 \pm 0.2)$

Average values were obtained from 10 OPV devices.

Table S5. The Field-Effect Performances of $\mathbf{P 2}$ based devices.

Annealing temperature $\left({ }^{\circ} \mathbf{C}\right)$	$\boldsymbol{\mu}_{\mathbf{h}, \max } / \boldsymbol{\mu}_{\mathrm{h}, \text { avg }} \mathbf{a}$ $\left(\mathbf{c m}^{2} \mathbf{V}^{-1} \mathbf{s}^{-1}\right)$	$\boldsymbol{V}_{\mathbf{T}}(\mathbf{V})$	$\boldsymbol{I}_{\text {on }} / \boldsymbol{I}_{\text {off }}$
as-spun	$0.013 / 0.011$	-18 to -21	$10^{4}-10^{5}$
60	$0.017 / 0.015$	-13 to -21	$10^{5}-10^{6}$
120	$0.022 / 0.022$	-9 to -12	$10^{4}-10^{5}$
180	$0.034 / 0.033$	-11 to -16	$10^{5}-10^{6}$

${ }^{\text {a }}$ Average values were obtained from 10 OFET devices.

2D Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) data

Table S6. The parameters of 2D GIWAXS.

Films	I-II stacking			Lamella stacking		
	$\mathrm{q}\left(\mathrm{nm}^{-1}\right)$	$\begin{gathered} \text { d-Spacing }{ }^{\mathrm{a}} \\ (\mathrm{~nm}) \end{gathered}$	$\begin{gathered} \mathrm{CCL}^{\mathrm{b}} \\ (\mathrm{~nm}) \end{gathered}$	$\mathrm{q}\left(\mathrm{nm}^{-1}\right)$	$\begin{gathered} \text { d-Spacing }{ }^{\mathrm{a}} \\ (\mathrm{~nm}) \end{gathered}$	$\begin{gathered} \mathrm{CCL}^{\mathrm{b}} \\ (\mathrm{~nm}) \end{gathered}$
P1	17.0272	0.3690	2.1436	2.7444	2.2895	8.7433
P1:Y6	17.5970	0.3571	2.2597	2.6362	2.3834	9.7817
	17.1985	0.3650	1.9244	3.0415	2.0658	8.2020
P2 Annealed at $180^{\circ} \mathrm{C}$	17.2458	0.3643	2.1772	3.0514	2.0591	11.2920

${ }^{\mathrm{a}}$ Computed using the relationship $\mathrm{d}=2 \pi / \mathrm{q}$, where q is the diffraction peak in the x -coordinate. ${ }^{\mathrm{b}} \mathrm{CCL}=$ $2 \pi / F W H M$, where FWHM indicates full width at half maximum.

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MALDI-MS Spectrum

Figure S5. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$ in CDCl_{3}.

Figure S6. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}$ in CDCl_{3}.

Figure S7. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}$ in CDCl_{3}.

Figure S8. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2}$ in CDCl_{3}.

Figure S9. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$ in CDCl_{3}.

Figure S10. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$ in CDCl_{3}.

Figure S11. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}$ in CDCl_{3}.

Figure S12. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4}$ in CDCl_{3}.

Figure S13. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$ in CDCl_{3}.

Figure S14. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 in CDCl_{3}.

Figure S15. The ${ }^{1} \mathrm{H}$ NMR spectrum of monomer $\mathbf{A z 2}-\mathbf{B r}$ in CDCl_{3}.

Figure S16. The ${ }^{13} \mathrm{C}$ NMR spectrum of monomer $\mathbf{A z 2 - B r}$ in CDCl_{3}.

Figure S17. The MALDI-MS spectrum of Az2-Br.

Figure S18. The ${ }^{1} \mathrm{H}$ NMR spectrum of monomer $\mathbf{A z 1}$ in CDCl_{3}.

Figure S19. The ${ }^{13} \mathrm{C}$ NMR spectrum of monomer $\mathbf{A z 1}$ in CDCl_{3}.

Figure S20. The MALDI-MS spectrum of Az1.

Figure S21. The ${ }^{1} \mathrm{H}$ NMR spectrum of monomer $\mathbf{A z 3}$ in CDCl_{3}.

Figure S22. The ${ }^{13} \mathrm{C}$ NMR spectrum of monomer $\mathbf{A z 3}$ in CDCl_{3}.

Figure S23. The MALDI-MS spectrum of Az3.

Figure S24. The ${ }^{1} \mathrm{H}$ NMR spectrum of polymer $\mathbf{P 1}$ in CDCl_{3}.

Figure S25. The ${ }^{1} \mathrm{H}$ NMR spectrum of polymer $\mathbf{P 2}$ in CDCl_{3}.

Figure S26. The ${ }^{1} \mathrm{H}$ NMR spectrum of polymer $\mathbf{P 3}$ in CDCl_{3}.

References

1. M. Ghazzali, V. Langer, C. Lopes, A. Eriksson and L. Öhrström, New Journal of Chemistry, 2007, 31, 1777-1784.
2. B. Zhang, Y. Wang, K. Lin, Y. Zhou and Q. Zhang, Journal of Materials Chemistry C, 2024.
3. L. Ye, R. M. Pankow, M. Horikawa, E. L. Melenbrink, K. Liu and B. C. Thompson, Macromolecules, 2019, 52, 9383-9388.
4. R. Venkatesan and L. Cindrella, Synthetic Metals, 2018, 246, 150-163.
5. D. Sek, K. Bijak, M. Grucela-Zajac, M. Filapek, L. Skorka, M. Siwy, H. Janeczek and E. Schab-Balcerzak, Synthetic Metals, 2012, 162, 1623-1635.
6. I. Mihai, M. Ivanoiu, L. Vacareanu and M. Grigoras, e-Polymers, 2011, 11.
7. D. K. Geiger, H. C. Geiger and L. M. Szczesniak, Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o916-o916.
