Electronic Supplementary Information for:

Dual Control of Stereoregularity and Molecular Weight in Cationic Polymerization of Vinyl Ether by Tunable TADDOLs/TiCl4 Initiating Systems

Hironobu Watanabe, Yuji Mishima, Arihiro Kanazawa and Sadahito Aoshima*

Department of Macromolecular Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan

Contents:

Experimental Section

Figure S1. $^1\mathrm{H}$ NMR spectrum of the poly(IBVE) obtained by the H-TADDOL/TiCl4 initiating system at 0 $^o\mathrm{C}$

Figure S2. Relation between polymerization temperature and stereoregularity of the resultant poly(IBVE)s obtained by the H-TADDOL/TiCl₄ initiating system at various temperatures

Table S1. Cationic polymerization of VEs with the H-TADDOL/TiCl₄ initiating system using various additives at -78 °C

Table S2. Cationic polymerization of IBVE with TADDOLs at -78 °C

Table S3. Cationic polymerization of EVE with TADDOLs at -78 °C

Figure S3. Effects of the bulkiness of the Ar groups in TADDOL on the tacticity of the poly(EVE)s obtained at -78 °C

Scheme S1. Schematic illustration of polymerization at 0 $^{\circ}\mathrm{C}$ and –78 $^{\circ}\mathrm{C}$

Figure S4. Time-conversion curves for the polymerization with H- or Me-TADDOL at 0 °C

Table S4. Cationic polymerization of IBVE with H-TADDOL under various polymerization conditions

Experimental Section

Procedure for TADDOL Synthesis

The typical procedure for TADDOL synthesis is described as follows:

Magnesium turnings (1.03 g, 42.4 mmol; Nacalai Tesque, \geq 99.5%) were added to a two-neck round-bottom flask equipped with a magnetic stir bar and a reflux condenser. The apparatus was dried using a heat gun under a dry nitrogen atmosphere, and a crystal of iodine and THF (40 mL) were added. 4-Bromotoluene (5.19 mL, 42.2 mmol; TCI, >99.0%) was slowly added into the flask at room temperature. After the reaction started, the reaction mixture was heated under reflux for 1.5 h and then cooled at 0 °C. A solution of dimethyl (4*R*,5*R*)-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (1.67 mL, 9.17 mmol; BLD Pharmatech, 98%) in THF (5.0 mL) was slowly added. The reaction mixture was heated under reflux for 5 h and then cooled at 0 °C. Then, the reaction was quenched with saturated aqueous NH₄Cl (25 mL). After the organic and aqueous layers were separated, the aqueous layer was extracted with ethyl acetate (10 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and filtered, and the solvent was removed under reduced pressure. The product was recrystallized with methanol to give (4*R*,5*R*)-(-)-2,2-Dimethyl- α , α , α ', α '-tetra(4-methylphenyl)-1,3-dioxolane-4,5-dimethanol (Me-TADDOL) (3.04 g, 63%). The product was dissolved in hot hexane, and trace amount of residual methanol was completely removed under reduced pressure.

(4R,5R)-(-)-2,2-Dimethyl-α, α, α', α'-tetra(4-methylphenyl)-1,3-dioxolane-4,5-dimethanol
(<u>Me-TADDOL</u>)
¹H NMR (CDCl₃; 500 MHz): δ7.39 (4H, d), 7.21 (4H, d), 7.11 (4H, d), 7.04 (4H, d), 4.57 (2H, s), 3.73 (2H, s), 2.35 (6H, s), 2.28 (6H, s), 1.06 (6H, s). (3.0 g, yield = 63%)

(4R,5R)-(-)-2,2-Dimethyl- $\alpha, \alpha, \alpha', \alpha'$ -tetra(4-t-butylphenyl)-1,3-dioxolane-4,5-dimethanol (<u>tBu-TADDOL</u>)

¹H NMR (CDCl₃; 500 MHz): δ7.44 (4H, d), 7.31 (4H, d), 7.29 (8H, s), 4.57 (2H, s), 3.88 (2H, s), 1.33 (18H, s), 1.27 (18H, s), 1.00 (6H, s). (2.1 g, yield = 66%)

(4R, 5R)-(-)-2,2-Dimethyl- $\alpha, \alpha, \alpha', \alpha'$ -tetra(4-methoxyphenyl)-1,3-dioxolane-4,5-dimethanol (<u>MeO-TADDOL</u>)

¹H NMR (CDCl₃; 400 MHz): δ7.44 (4H, d), 7.24 (4H, d), 6.86 (4H, d), 6.77 (4H, d), 4.49 (2H, s), 3.92 (2H, s), 3.83 (6H, s), 3.76 (6H, s), 1.07 (6H, s). (3.8 g, yield = 71%)

(4R,5R)-(-)-2,2-Dimethyl- $\alpha, \alpha, \alpha', \alpha'$ -tetra(4-trifluoromethylphenyl)-1,3-dioxolane-4,5-dimethano l (<u>CF₃-TADDOL</u>)

¹H NMR (CDCl₃; 400 MHz): δ 7.63 (8H, m), 7.52 (4H, d), 7.42 (4H, d), 4.56 (2H, s), 3.98 (2H, s), 1.13 (6H, s). The crude product was purified by silica gel column chromatography (9:1 hexane/ethyl acetate). (3.0 g, yield = 88%)

(4R,5R)-(-)-2,2-Dimethyl- $\alpha, \alpha, \alpha', \alpha'$ -tetra(pentafluorophenyl)-1,3-dioxolane-4,5-dimethanol (R,R)-<u>TADDOL(C₆F₅)</u>

¹H NMR (CDCl₃; 400 MHz): δ 5.42 (2H, s), 3.94 (2H, s), 1.40 (6H, s). The crude product was purified by alumina column chromatography (9:1 hexane/ethyl acetate)}. (0.7 g, yield = 11%)

Characterization

The molecular weight distributions (MWDs) of the polymers were measured by gel permeation chromatography (GPC) in chloroform at 40 °C with polystyrene gel columns [TSKgel GMH_{HR}-M × 2 (exclusion limit molecular weight = 4×10^6 ; bead size = 5 µm; column size = 7.8 mm I.D. × 300 mm); flow rate = 1.0 mL/min] connected to a Tosoh DP-8020 pump, a CO-8020 column oven, a UV-8020 ultraviolet detector, and an RI-8020 refractive-index detector. The number-average molecular weight (M_n) and polydispersity ratio [weight-average molecular weight/number-average molecular weight (M_w/M_n)] were calculated from the chromatographs with respect to 14 polystyrene standards (Tosoh; $M_n = 5.0 \times 10^2 - 1.09 \times 10^6$, $M_w/M_n < 1.2$). NMR spectra were recorded using JEOL JNM-ECA 500 (500.16 MHz for ¹H) and JEOL JNM-ECS 400 (399.78 MHz for ¹H and 100.53 MHz for ¹³C) spectrometers.

Figure S1. ¹H NMR spectrum of the poly(IBVE) obtained by the H-TADDOL/TiCl₄ initiating system at 0 °C (conversion ~ 100%) {[IBVE]₀ = 0.76 M, [H-TADDOL]₀ = 5.5 mM, [TiCl₄]₀ = 5.0 mM, in hexane/toluene (9/1 v/v)}. * Ligand, toluene, water, grease, and TMS.

Figure S2. Relation between polymerization temperature and stereoregularity of the resultant poly(IBVE)s obtained by the H-TADDOL/TiCl₄ initiating system at various temperatures $\{[IBVE]_0 = 0.76 \text{ M}, [H-TADDOL]_0 = 5.5 \text{ mM}, [TiCl_4]_0 = 5.0 \text{ mM}, in hexane/toluene (9/1 v/v)\}.$

entry	[IBVE]0	additive	[additive]0	solvent (v/v)	time	conv. (%)	$M_{\rm n} imes 10^{-3 b}$	$M_{ m w}/M_{ m n}{}^b$	m (%)
1	0.76 M	None	_	hexane/toluene (9/1)	30 s	~100	60.5	6.67	87
2			_	toluene	30 s	96	31.3	10.5	85
3	0.10 M		_	hexane/toluene (9/1)	1 min	~100	84.9	2.63	90
4			—	toluene	1 min	83	167	2.05	87
5	0.76 M	EtOAc	50 mM	hexane/toluene (9/1)	15 d	~0	_	_	_
6			20 mM	hexane/toluene (9/1)	15 d	~0	_	_	_
7			20 mM	toluene	60 d	7	_	_	_
8	0.10 M		10 mM	hexane/toluene (9/1)	70 h	58	23.7	2.59	86
9			10 mM	toluene	69 h	75	28.9	1.90	86
10			5.0 mM	hexane/toluene (9/1)	3 h	~100	101	2.52	89
11			5.0 mM	toluene	2 h	~100	51.3	3.10	87
12	0.10 M	THF	5.0 mM	hexane/toluene (9/1)	2 h	~100	32.0	5.14	89
13	0.76 M	DMAc	2.5 mM	hexane/toluene (9/1)	5 min	15	228	1.93	85
14			2.5 mM	toluene	30 min	95	67.8	2.01	85
15			4.0 mM	toluene	2 h	11	32.3	2.47	85
16	0.76 M	DEA	1.0 mM	toluene	12 min	94	81.3	3.67	84
17			2.5 mM	toluene	24 h	4	_	_	_

Table S1. Cationic polymerization of IBVE with the H-TADDOL/TiCl₄ initiating system using various additives at -78 °C.^{*a*}

^{*a*} [H-TADDOL]₀ = 5.5 mM, [TiCl₄]₀ = 5.0 mM (DMAc: *N*,*N*-dimethyl acetoamide, DEA: *N*,*N*-diethylaniline). ^{*b*} Calculated with polystyrene standards.

Table S2. Cationic polymerization of IBVE with TADDOLs at -78 °C.^a

ontwo	TADDOI	[IBVE]0	solvont (v/v)	timo	conv.	$M \times 10^{-3b}$	$M_{\rm w}/M_{\rm n}{}^b$	m
entry	IADDOL		solvent (v/v)	ume	(%)	$M_n \wedge 10$		(%)
1	CF ₃ -TADDOL	0.10 M	hexane/toluene (9/1)	30 s	~100	7.3	1.81	83
2 ^{<i>c</i>}		0.10 M	hexane/toluene (9/1)	30 min	~100	66.2	1.40	90
3^d		0.10 M	hexane/toluene (9/1)	48 h	68	136	2.05	78
4 ^{<i>c</i>}		0.76 M	hexane/toluene (9/1)	1 min	~100	466	1.67	85
5		0.10 M	toluene	30 s	~100	7.7	1.45	84
6	H-TADDOL	0.10 M	toluene	1 min	83	167	2.05	87
7	tBu-TADDOL	0.10 M	toluene	1 h	~100	25.3	14.8	77
8	(CF ₃) ₂ -TADDOL	0.10 M	hexane/toluene (9/1)	30 s	88	6.8	1.80	74
9 ^c		0.10 M	hexane/toluene (9/1)	10 min	100	31.1	1.58	76

^{*a*} [TADDOL]₀ = 5.5 mM, [TiCl₄]₀ = 5.0 mM. ^{*b*} Calculated with polystyrene standards. ^{*c*} Ethyl acetate (5.0 mM) was added. ^{*d*} Ethyl acetate (10 mM) was added.

entry	TADDOL	[EVE]0	solvent (v/v)	time	conv. (%)	$M_{\rm n} imes 10^{-3 b}$	$M_{ m w}/M_{ m n}$, m (%)
1	H-TADDOL	0.20 M	hexane/toluene (9/1)	4 h	~100	15.2	2.68	75
2	tBu-TADDOL	0.10 M	hexane/toluene (9/1)	4 h	50	18.2	2.78	81
3	CF ₃ -TADDOL	0.10 M	hexane/toluene (9/1)	5 min	~100	5.5	2.39	83

Table S3. Cationic polymerization of EVE with TADDOLs at -78 °C.^a

^{*a*} [TADDOL]₀ = 5.5 mM, [TiCl₄]₀ = 5.0 mM. ^{*b*} Calculated with polystyrene standards.

Figure S3. Effects of the bulkiness of the Ar groups in TADDOL on the tacticity of the poly(EVE)s obtained at $-78 \degree C$ (H, CF₃ and tBu from left to right) {[EVE]₀ = 0.10 or 0.20 M, [TADDOL]₀ = 5.5 mM, $[TiCl_4]_0 = 5.0 \text{ mM}$. The data correspond to Table S2.

(A) Polymerization at 0 °C: Atom-transfer mechanism via fast equilibrium of dormant C-CI bonds and active species

Figure S4. Time–conversion curves for the polymerization with H- or Me-TADDOL at 0 °C $\{[\text{IBVE}]_0 = 0.76 \text{ M}, [\text{H-TADDOL}]_0 = 4.4 \text{ mM} \text{ (for A)}, [(R,R)-Me-TADDOL]_0 = 4.0 \text{ mM} \text{ (for B)}, [\text{TiCl}_4]_0 = 4.0 \text{ mM}, \text{ in hexane/toluene (9/1 v/v) at 0 °C} \}.$

Table S4. Cationic polymerization of IBVE with H-TADDOL under various polymerization conditions.^{*a*}

entry	solvent (v/v)	temp. (°C)	time	conv. (%)	$M_{ m n} imes 10^{-3 b}$	$M_{ m w}/M_{ m n}{}^c$	<i>m</i> (%)
1	hexane/toluene (9/1)	-40	10 s	~100	13.6	3.26	84
2		0	10 s	65	6.1	1.37	_
			1min	~100	8.1	1.24	80
3		30	1 min	85	6.7	1.23	75
4	toluene	0	5 min	47	5.6	2.33	_
5	CH_2Cl_2	0	1 min	8	_	_	_
6			2 h	~100	5.8	1.20	64

^{*a*} [IBVE]₀ = 0.76 M, [H-TADDOL]₀ = 5.5 mM, [TiCl₄]₀ = 5.0 mM. ^{*b*} Calculated with polystyrene standards.