Supplementary information for

Ring-opening polymerisation of alkyl-substituted ε-caprolactones: Kinetic effects of substitution position

Cinzia Clamor¹, James Beament², Peter M. Wright,² Beatrice N. Cattoz,² Rachel K. O'Reilly^{1*}, Andrew P. Dove^{1*}

¹ School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

² Infineum UK Ltd, Milton Hill, Abingdon OX13 6BB, United Kingdom.

Experimental details

Synthesis of the alkyl substituted monomers: $\gamma C_{18}CL$, $\epsilon C_{18}CL$ and the mixture of the β and $\delta C_{18}CL$ isomers

The alkyl substituted monomers were provided by Infineum UK Ltd. *via* a contract manufacturer. The synthesis was achieved as shown in Scheme S1-S3.

Scheme S1. Synthesis pathway of $\gamma C_{18}CL$.

Scheme S2. Synthesis pathway of $\varepsilon C_{18}CL$.

Scheme S3. Synthesis pathway of the mixture of the β and $\delta C_{18}CL$ isomers.

$\gamma(C_{18})(\epsilon$ -caprolactone)

¹H NMR (**300** MHz, CDCl₃, **299** K, ppm): *δ* = 4.38 – 4.07 (m, 2H), 2.76 – 2.49 (m, 2H), 1.94 (m, J = 14.0, 10.7, 7.0, 3.4, 1.7 Hz, 2H), 1.72 – 1.40 (m, 3H), 1.25 (s, 32H), 0.98 – 0.75 (m, 3H).

¹³C NMR (101 MHz, CDCl₃, 299 K, ppm): *δ* = 176.28 (*C*=O), 68.35 ((CO)OCH₂), 40.41 (*C*H₂(CO)OCH), 36.61, 35.55, 33.37, 32.08, 29.89, 29.85, 29.83, 29.81, 29.77, 29.73, 29.51, 29.08, 26.96, 22.84, 14.27.

$\beta/\delta(C_{18})$ (ϵ -caprolactone) isomers (1:1 mixture)

¹H NMR (300 MHz, C₆D₆, 299 K, ppm): δ = 3.73 – 3.57 (m, 1H), 5.54 – 3.36 (m, 1H), 2.44 – 2.21 (m, 1H), 2.15 – 1.96 (m, 1H), 1.48 – 0.99 (m, 38H), 0.97 – 0.82 (m, 3H).

¹³C NMR (101 MHz, C₆D₆, 299 K, ppm): $\delta = 173.80$ (*C*=O), 173.03 (*C*=O), 71.51 ((CO)OCH₂), 67.88 ((CO)OCH₂), 39.69 (*C*H₂(CO)OCH), 38.53 (*C*H₂(CO)OCH), 34.51, 34.28, 34.01, 33.74, 31.99, 29.86, 29.83, 29.78, 29.76, 29.75, 29.71, 29.69, 29.65, 29.48, 26.83, 26.79, 22.76, 14.02.

ε(C₁₈)(ε-caprolactone)

¹H NMR (300 MHz, C₆D₆, 299 K, ppm): $\delta = 3.63$ (m, 1H), 2.48 – 2.33 (m, 1H), 2.07 – 1.90 (m, 1H), 1.58 – 1.09 (m, 40H), 0.97 – 0.86 (m, 3H).

¹³C NMR (101 MHz, C₆D₆, 299 K, ppm): δ = 176.01 (C=O), 80.76 ((CO)OCH), 36.59, 35.12, 34.72, 32.08, 29.85, 29.81, 29.79, 29.73, 29.67, 29.57, 29.51, 28.51, 25.58, 23.23, 22.84, 14.27 (CH₃).

General procedure for DPP catalysed polymerisations

Using standard glovebox techniques, a stock solution was prepared containing 4methoxybenzyl alcohol initiator (55.0 mg, 0.40 mmol) and dry benzene-d6 (500 µL). The stock solution (50 µL) was added to the appropriate monomer (2 mmol) and catalyst (50.0 mg, 0.20 mmol) in dry benzene-d6 (1.95 mL) to form a 1 M solution. The solution was then transferred into a vial. Aliquots were taken at allotted time points and quenched by the addition of Amberlyst[®] A21 free base. After determining the polymer conversion by ¹H NMR spectroscopy, Amberlyst[®] was removed *via* filtration through a pipette plugged with cotton wool and the polymer was precipitated into cold MeOH, cooled using liquid nitrogen. Polymers were dried under vacuum.

$\beta/\delta(C_{18})$ poly(ϵ -caprolactone) isomers

ppm): $\delta = 6.88 \text{ (d, } J = 8.7 \text{ Hz, } 2\text{H, } \text{H}^{\text{b}}\text{),}$

5.04 (s, 2H, H^d), 4.18–3.92 (m, 93H, H^j, H^p), 3.80 (s, 3H, H^a), 2.43–2.14 (m, 104H, H^f, H^l), 1.87 (s, 53H, CH₂, Hⁱ), 1.76–1.51 (m, 135H, CH₂, H^h, H^m, Hⁿ), 1.25 (s, 2035H, H^g, H^o, CH₂), $0.87 (d, J = 7.0 Hz, 177H, CH_3).$

¹³C NMR (101 MHz, CDCl₃, 299 K, ppm): $\delta = 173.6$ (C^e, C^k), 66.9 (C^p, C^j), 36.9 (C^g, C^o), 34.5 (C^f, C^l), 32.0 (CH₂), 31.1 (CH₂), 30.9 (CH₂), 30.0 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.4 (CH₂), 26.7 (CH₂), 26.6 (CH₂), 22.7 (CH₂), 22.2 (C^h, C^m), 14.2 (CH₃).

SEC (CHCl₃): $M_{\rm n} = 6350$, $M_{\rm w} = 6900$, $D_{\rm M} = 1.09$.

$\gamma(C_{18})$ poly(ϵ -caprolactone)

¹H NMR (300 MHz, CDCl₃, 299 K, ppm): $\delta = 6.96-6.77$ (m, 2H, H^b), 5.04 (s, 2H, H^d), 4.08 (t, J = 7.1 Hz, 95H, H^j), 3.81 (s, 3H, H^a), 2.28 (t, J = 7.8 Hz, 103H, H^f), 1.86–1.35

(m, 208H, H^g, Hⁱ, H^h), 1.37–1.14 (m, 1806H, CH₂), 0.99–0.63 (m, 155H, CH₃). ¹³C NMR (101 MHz, CDCl₃, 299 K, ppm): $\delta = 173.9$ (C^e), 62.8 (C^j), 61.0 (CH₂), 34.4 (C^h),

33.3 (CH₂), 32.3 (CH₂), 32.08 (C^g)f, 31.7 (C^f), 30.2 (CH₂), 29.9 (CH₂), 29.9 (CH₂), 29.8 (CH₂), 29.5 (CH₂), 28.8 (Cⁱ), 26.6 (CH₂), 22.8 (CH₂), 14.3 (CH₃).

SEC (CHCl₃): $M_n = 11350$, $M_w = 12700$, $D_M = 1.12$.

ε(C₁₈)poly(ε-caprolactone)

$$a \xrightarrow{O}_{O} \xrightarrow{C}_{O} \xrightarrow{O}_{O} \xrightarrow{g}_{H} \xrightarrow{i}_{I_{37}} \xrightarrow{O}_{I_{18}H_{37}}$$

¹H NMR (400 MHz, CDCl₃, 299 K, ppm): $\delta = 6.81$ (d, J = 8.7 Hz, 2H, H^b), 4.96 (s, 2H, H^d), 4.78 (t, J = 6.2 Hz, 48H, H^j), 3.73 (s, 3H, H^a), 2.19 (t, J = 7.6 Hz, 104H, H^f), 1.65–

1.33 (m, 275H, H^g, Hⁱ, H^h), 1.18 (d, J = 2.4 Hz, 1852H, CH₂), 0.81 (t, J = 6.7 Hz, 167H, CH₃).

¹³C NMR (101 MHz, CDCl₃, 299 K, ppm): $\delta = 173.4$ (C^e), 74.0 (C^j), 50.9 (CH₂), 34.5 (CH₂), 34.0 (CH₂), 33.9 (C^f), 32.0 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 25.4 (CH₂), 25.0 (CH₂), 25.0 (CH₂), 22.7 (CH₂), 14.1 (CH₃). **SEC (CHCl₃):** $M_n = 10100, M_w = 12500, D_M = 1.23.$

Figure S1. ¹H NMR spectrum (CDCl₃, 300 MHz) of γC_{18} CL. * = CHCl₃.

Figure S2. ¹H NMR spectrum (C₆D₆, 300 MHz) of $\beta/\delta C_{18}$ PCL isomers. * = C₆D₅H.

Figure S3. ¹H NMR spectrum (C₆D₆, 300 MHz) of ε C₁₈CL isomers. * = C₆D₅H.

Figure S4. ¹H NMR spectrum (CDCl₃, 300 MHz) of γC_{18} PCL. * = CHCl₃.

Figure S5. ¹H NMR spectrum (CDCl₃, 300 MHz) of $\beta/\delta C_{18}$ PCL isomers. * = CHCl₃. ** = MeOH.

Figure S6. ¹H NMR spectrum (CDCl₃, 400 MHz) of εC_{18} PCL. * = CHCl₃. ** = MeOH.

Figure S7. Size exclusion chromatogram of the molecular weight distribution of γC_{18} PCL using 4-methoxybenzyl alcohol as initiator ([M]₀/[I]₀ = 50). Molecular weight was determined against poly(styrene) standards using CHCl₃ (0.5% NEt₃) as eluent.

Figure S8. Size exclusion chromatogram of the molecular weight distribution of $\beta/\delta C_{18}$ PCL using 4-methoxybenzyl alcohol as initiator ([M]₀/[I]₀ = 50). Molecular weight was determined against poly(styrene) standards using CHCl₃ (0.5% NEt₃) as eluent.

Figure S9. Size exclusion chromatogram of the molecular weight distribution of ϵC_{18} PCL using 4-methoxybenzyl alcohol as initiator ($[M]_0/[I]_0 = 50$) and DPP (10 mol%) as the catalyst at 25 °C. Molecular weight was determined against poly(styrene) standards using CHCl₃ (0.5% NEt₃) as eluent.

βC ₁₈ CL				δC ₁₈ CL			
	Time (min)	Resolved conversion	Resolved [M]t ^a	Time (min)	Resolved conversion	Resolved [M] _t ^a	_
	0	0	0.5	0	0	0.5	-
	15	12	0.44	15	18	0.41	
	30	14	0.43	30	40	0.3	
	60	14	0.43	60	64	0.18	
	90	28	0.36	90	76	0.12	
	120	30	0.35	120	88	0.06	
	240	52	0.24	240	-	-	
	360	68	0.16	360	-	-	
	420	72	0.14	420	-	-	

Table S1. Calculated monomer concentration over time for the kinetic resolution of the polymerisation of $\beta/\delta(C_{18})$ CL based on a 1:1 mixture of the isomers.

^a ROP of $\beta/\delta(C_{18})$ CL isomers using DPP and 4-methoxybenzyl alcohol as initiator ([M]₀/[I]₀ = 50). [M] = 1 M. Calculated from isomer ratios obtained by ¹H NMR spectroscopy based on a total monomer concentration of 1 M and a starting ratio of β isomer : δ isomer = 1:1.

Figure S10. Kinetic plots of ln of initial monomer concentration by monomer concentration $(\ln([M]_0/[M]_t))$ against time for the ROP of $\epsilon C_{18}CL$ using DPP (10 mol%) and Mg(BHT)₂(THF)₂ (2 mol%) at 25 °C and 50 °C, respectively.

Figure S11. Differential scanning calorimetry (DSC) for 2^{nd} heating cycle (200 to -100 °C, 10 °C min⁻¹) showing melting temperature of the polymers.