Electronic Supplementary Information

Thiophen- and bithiophene-based π -Conjugated Schiff base oligomers containing binaphthalene moieties in the backbone. Properties and computational simulations

Alexis F. González^a, Andrea P. Mariman^a, René A. Hauyon^a, Danitza Pavez-Lizana^a, César Saldías^b, Eduardo Schott^c, Ximena Zarate^d, Luis Garcia^a, Carmen M. González-Henríquez^e, Ignacio A. Jessop^f, Alain Tundidor-Camba^a*, Patricio A. Sobarzo^a*, Claudio A. Terraza^a*

- ^a Research Laboratory for Organic Polymers, Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
- ^b Department of Physical Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
- ^c Department of Inorganic Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
- ^d Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile
- ^e Laboratory of Nanotechnology and Advanced Materials, Department of Chemistry, Universidad Tecnológica Metropolitana, Santiago, Chile

^f Organic and Polymeric Materials Research Laboratory, Department of Chemistry, Universidad de Tarapacá, Arica, Chile

*Corresponding authors: cterraza@uc.cl, psobarzo@aol.com, atundido@uc.cl

	o-AZdAN1Th		o-AZdAN2Th	
	25 °C	60 °C	25 °C	60 °C
THF	*	*	*	*
DCM ¹	**	**	**	**
CHCl₃	**	**	**	**
Acetone ¹	*	*	*	*
DMSO	**	**	**	**
DMF	**	**	**	**
СВ	*	*	*	*
DCM ¹	38 % ²	43% ²	45% ²	46% ²

Table S1. Solubility results of o-AZdANThs at two temperatures.

¹: Test carried out at solvent boiling. ²: Soluble fraction. *: Partially soluble, solvent coloration and undissolved material. **: Partially soluble, solution colored with opalescence, the solid material sediments after stopping stirring.

Figure S1. Selected section of the ¹H NMR spectrum (CDCl₃) of o-AZdN2Th.

Figure S2. GPC traces for o-AZdAN1Th (a) and o-AZdAN2Th (b).

Figure S3. DSC spectra of o-AZdAN1Th (a) and o-AZdAN2Th (b) in nitrogen atmosphere.

Figure S4. Normalized spectra for UV-vis (a, b) and PL (c, d) for o-AZdANThs in diluted solutions of several organic solvents.

Table S2. Torsion and dihedral angles of the studied oligomers.

	Angle C-C-C-C* (°)	Torsion angle (°)
o-ZdAN1Th	65.95	93
o-ZdAN2Th	66.82	164
o-ZdAN3Th	66.45	152
o-ZdAN4Th	66.57	135

* Average value.

Figure S5 Molecular Orbitals involved in the calculated TD-DFT transitions for the four oligomers studied.