Supporting Information

In situ pyrazolylborate ligand synthesis and coordination behaviours

in aluminum oxo clusters

Jian-Bing Chen,^[a,b] San-Tai Wang, ^[a,c] Si-Hao Shen, ^[a,c] Ying-Hua Yu, ^[a,c] Wei-Hui Fang,*^[a] and Jian Zhang*^[a]

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the

Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.

^b School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 (P. R. China)

^c University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100049, P. R. China.

E-mail: fwh@fjirsm.ac.cn; zhj@fjirsm.ac.cn

Contents

Experimental Section	S2
PXRD analyses for Al-O-B clusters.	S7
FT-IR spectra of Al-O-B clusters	S9
EDS spectra of Al-O-B clusters	S11
The solid-state absorption spectra of Al-O-B clusters	S12
TGA spectra of Al-O-B clusters	S13
Calculation of the nonlinear optical parameters	S14
References	.S15

Experimental Section

All the reagents and solvents were commercially and used as received without further purification. Aluminium isopropoxide, pyrazole and 4-methylpyrazole were acquired from Aladdin Chemical Reagent Shanghai. Phenylboronic acid, 3,5-bis(Trifluoromethyl)benzeneboronic, 3-chlorophenylboronic acid, 3-fluorophenylboronic acid, 4-fluorophenylboronic acid, ethanol (≥99.5%) and acetonitrile (≥ 99.5%) were acquired from Sinopharm Chemical Reagent Beijing.

Synthesis of AlOC-126 $[Al_2(L^1)_2(HL^1)_2 \cdot MeCN] (L^1=PhB(\mu-O)(pz)_2)$

A mixture of aluminium isopropoxide (204 mg, 1 mmol), phenylboronic acid (121 mg, 1 mmol), pyrazole (2 g, 29.38 mmol) and acetonitrile (2 mL) was sealed in a 20 mL vial and transferred to a preheated oven at 100 °C for 5 days. When cooled to room temperature, block colourless crystals were obtained. (yield: 42% based on Al(OⁱPr)₃). The crystals are rinsed with ethanol and preserved under a sealed and dry environment. FT-IR (KBr, cm⁻¹): 1575(v), 1400(s), 1200(s), 1026(s), 769(s), 669(s), 495(s).

The synthesis of AIOC-126-1 $[Al_2(L^1)_2(HL^1)_2 \cdot MeCN](L^1 = (3-F-PhB(\mu-O)(pz)_2)$, AIOC-126-2 $[Al_2(L^1)_2(HL^1)_2](L^1 = (4-F-PhB(\mu-O)(pz)_2)$, AIOC-126-3 $[Al_2(L^1)_2(HL^1)_2](L^1 = (3-CI-Ph(B(\mu-O)(pz)_2))$ was replaced by different functionalized phenylboronic acids under the same synthesized conditions of AIOC-126.

Synthesis of AIOC-127 [AI₄(L²)₄(μ₃-O)(pz-CH₃)₃)·MeCN] (L²=(3,5-Bis-CF₃-PhB(μ-O)(pz-CH₃)₂)

A mixture of aluminium isopropoxide (204 mg, 1 mmol), 3,5-bis(Trifluoromethyl) benzeneboronic acid, (257 mg, 1 mmol), 4-methylpyrazole (2 g, 24.36 mmol) and acetonitrile (2 mL) was sealed in a 20 mL vial and transferred to a preheated oven at 100 °C for 5 days. When cooled to room temperature, block colourless crystals were obtained. (yield: 21% based on Al(OⁱPr)₃). The crystals are rinsed with ethanol and preserved under a sealed and dry environment. FT-IR (KBr, cm⁻¹): 3320(m), 2927(v), 2362(m), 1392(m), 1274(s), 1107(s), 850(s), 680(s).

Synthesis of AlOC-128 [Al₆(L³)₆(μ₃-O)₂(pz-CH₃)₂] (L³=(3-F-PhB(μ-O)(pz-CH₃)₂)

A mixture of aluminium isopropoxide (204 mg, 1 mmol), 3-fluorophenylboronic acid (139 mg, 1 mmol), 4methylpyrazole (2 g, 24.36 mmol) and acetonitrile (2 mL) was sealed in a 20 mL vial and transferred to a preheated oven at 100 °C for 5 days. When cooled to room temperature, block colourless crystals were obtained. (yield: 38% based on Al(OⁱPr)₃). The crystals are rinsed with ethanol and preserved under a sealed and dry environment. FT-IR (KBr, cm⁻¹): 2923(s), 2360(m), 1571(v), 1394(m), 1420(s), 1234(s), 1107(s), 774(s).

Z-scan measurements

The Z-scan technique¹ was applied to investigate the nonlinear optical (NLO) behavior of the samples with an output wavelength of 532 nm. A picosecond light source irradiated by a PL2250 laser (EKSPLA) was a Q-switched Nd: YAG pulsed laser system having a pulse width of 30 ps, a repetition frequency of 10 Hz, a beam waist radius of ω_0 of 23 µm, and a Rayleigh length of 3.12 mm. Liquid samples were measured in 2 mm quartz cuvettes for testing. The cuvettes were mounted on a computer-controlled translation stage that shifted the samples along the z axis and all test procedures were conducted at room temperature. For comparison, the linear transmittance of the sample was adjusted to be ~65%.

X-Ray crystallographic analysis

Crystallographic data of crystal AlOC-126, AlOC-126-1, AlOC-126-2, AlOC-126-3, AlOC-127 and AlOC-128 were collected on Hybrid Pixel Array detector equipped with Ga-K α radiation (λ = 1.3405 Å) at about 293 K. The structures were solved with the dual-direct methods using ShelXT and refined with the full-matrix least-squares technique based on F² with the SHELXL. Non-hydrogen atoms were refined anisotropically, while hydrogen atoms were added theoretically, riding on the concerned atoms and refined with fixed thermal factors. All absorption corrections were performed using the multi-scan program. The obtained crystallographic data are summarized in Table S1.

Table S1. Crystal data and structure refinement results (AIOC-126, AIOC-126-1, AIOC-126-2,

Compound	AIOC-126	Aloc-127	AIOC-128
Formula	$C_{50}H_{49}AI_2B_4N_{17}O_4$	$C_{78}H_{61}AI_4B_4F_{24}N_{23}O_5$	$C_{92}H_{94}AI_6B_6F_6N_{28}O_8$
Mr	1065.49	2055.71	2128.69
Temperature(K)	293 (2)	293 (2)	293 (2)
Wavelength (Å)	1.34050	1.34050	1.34050
Crystal system	triclinic	triclinic	monoclinic
Space group	P-1	P-1	C2/c
a/Å	11.9881(2)	14.79590(10)	18.8931(3)
b/Å	12.4767(2)	15.0054(2)	20.5399(3)
c/Å	21.5093(3)	22.6105(3)	27.5824(5)
α/°	100.2750(10)	81.1480(10)	90
β/°	97.0680(10)	82.3220(10)	91.246(2)
γ/°	117.664(2)	68.3070(10)	90
V/ų	2724.37(9)	4592.75(10)	10701.2(3)

AIOC-126-3, AIOC-127, AIOC-128)

Ζ	2	2	8
ho/g cm ⁻³	1.299	1.536	1.321
µ/mm⁻¹	0.632	2.000	0.800
F(000)	1112.0	2064.0	4416.0
Collected refins	39228	97698	39249
Unique reflns (R _{int})	12289(0.0327)	20483(0.0407)	11920(0.0504)
Completeness	1	1	1
GOF on F ²	1.093	1.033	1.082
$R_1^{a}/wR_2^{b}[l > 2(l)]$	$wR_2^{b}[I > 2(I)]$ 0.0430/0.1171		0.0596/0.1563
CCDC number	2234657	2234659	2234656

 ${}^{a}R_{1} = \Sigma \mid |F_{o}| - |F_{c}| \mid /\Sigma \mid F_{o}| \ {}^{b}wR_{2} = \{\Sigma [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{o}{}^{2})^{2}] \}^{1/2}$

_

Compound	AIOC-126-1	AIOC-126-2	AlOC-126-3
Formula	$C_{50}H_{45}AI_2B_4F_4N_{17}O_4\\$	$C_{48}H_{42}AI_{2}B_{4}F_{4}N_{16}O_{4}$	$C_{48}H_{42}AI_2B_4CI_4N_{16}O_4$
Mr	1119.21	1080.17	1144.97
Temperature(K)	293(2)	293(2)	293(2)
Wavelength (Å)	1.34050	1.34050	1.34050
Crystal system	triclinic	monoclinic	triclinic
Space group	P-1	P21/c	P-1
a/Å	12.1335(3)	16.8343(4)	11.7060(2)
b/Å	12.5287(3)	14.6616(3)	19.7341(3)
c/Å	21.5352(4)	21.2160(4)	24.0968(3)
α/°	97.791(2)	90	107.4400(10)
в/°	99.012(2)	92.643(2)	90.4670(10)
γ/°	118.010(3)	90	90.8220(10)
V/Å ³	2771.26(13)	5230.92(19)	5309.65(14)
Ζ	2	4	4
ho/g cm ⁻³	1.341	1.372	1.432
µ/mm⁻¹	0.707	0.732	1.854
F(000)	1152.0	2224.0	2348.0
Collected refins	26284	37476	66642
Unique reflns (R _{int})	9974(0.0201)	11474(0.0565)	23305(0.0699)
Completeness	0.99	0.98	0.99
GOF on F ²	1.062	1.068	1.061
$R_1^{a}/wR_2^{b}[I > 2(I)]$	0.0424/0.1215	0.0692/0.1822	0.0879/0.2498
CCDC number	2234654	2234655	2234658

Fig. S1 Schematic diagram of the combination of L and Al³⁺ in the AlOC-126, AlOC-127, AlOC-128.

Fig. S2 Coordination environment of Al³⁺ ions and B-O-Al unit in AlOC-126. Color code: Al, green; C, black; O, red; N, blue; B, yellow.

Fig. S3 Coordination environment of Al³⁺ ions and B-O-Al unit in AlOC-127. Color code: Al, green; C, black; O, red; N, blue; B, yellow; F, green.

Fig. S4 Coordination environment of Al³⁺ ions and B-O-Al unit in AlOC-128. Color code: Al, green; C, black; O, red; N, blue; B, yellow; F, green.

Figure S5. Packing diagrams of AIOC-126 in the view of (a) a-axis and (b) c-axis.

Figure S6. Packing diagrams of AIOC-127 in the view of (a) a-axis and (b) c-axis.

Figure S7. Packing diagrams of AIOC-128 in the view of (b) a-axis and (c) c-axis.

Figure S8. The hydrogen bond interactions (C-H…F) between F on benzene ring and C-H on 4methylpyrazole in the **AIOC-127** and **AIOC-128**. Color code: AI, green; C, black; O, red; N, blue; B, yellow; F, green; H, white.

PXRD analyses for Al-O-B clusters

Figure S9. PXRD patterns of AIOC-126.

Figure S10. PXRD patterns of AIOC-126-1.

Figure S12. PXRD patterns of AIOC-126-3.

Figure S13. PXRD patterns of AIOC-127.

Figure S14. PXRD patterns of AlOC-128.

FT-IR spectra of Al-O-B clusters

Figure S15. FT-IR spectra of AIOC-126.

Figure S16. FT-IR spectra of AIOC-127.

Figure S17. FT-IR spectra of AIOC-128.

It can be seen from the Fig. S15-S17 that AIOC-126 has an δ_{OH} peak because of the incompletely protonated L exists in AIOC-126. Given that the introduction of functional groups F into the benzene ring and 4-methylpyrazole, AIOC-127 and AIOC-128 have $v_{(C-F)}$ and $v_{(C-H)}$ in $-CH_3$ peaks than AIOC-126.

EDS spectra of Al-O-B clusters

Figure S20. EDS spectra of AIOC-128.

The solid-state absorption spectra of Al-O-B clusters.

Figure S21. The solid-state absorption spectra of AIOC-126.

Figure S22. The solid-state absorption spectra of AIOC-127.

Figure S23. The solid-state absorption spectra of AlOC-128.

Figure S24. TGA spectra of AlOC-126, AlOC-127, AlOC-128.

The thermal stability of **AlOC-126** to **AlOC-128** was investigated in N₂ atmosphere up to 800 °C with a heating rate of 10 K min⁻¹, which is presented in Fig. S24. There are similar structures and compositions in AlOC-126 to AlOC-128, so only the TG investigation of **AlOC-127** was described in detail. **AlOC-127** with tetranuclear configuration can be stabilized at 217 °C before weight loss begins. It reveals a weight loss (6.7%) between 217 °C and 340 °C can be attributed to the removal of CH₃CN. The weight loss (64.5%) between 340 °C and 620 °C is assigned to the departure of the organic ligand owning to degradation of the structure.

Al01 3.328		Al02 3.334	ŀ	0004 1.316	O0AA 1.312
Al01-0003	1.8607	Al02-0003	1.8698	Al01-0004 1.8846	Al02-00AA 1.8903
Al01-0004	1.8846	Al02-0005	1.8468	B01I- O004 1.461	B01Q-O0AA 1.459
Al01-0005	1.8825	AI02-O0AA	1.8903		
Al01-N007	1.9743	AI02-N00D	1.9699		
Al01-N009	1.9762	AI02-N00E	2.0762		
Al01-N00B	2.0570	AI02-N00L	1.9847		

Table S2. BVS analysis for AIOC-126.

Calculation of the nonlinear optical parameters

The following values are calculated and simulated according to the reported literature.^{2, 3} The nonlinear absorption coefficient (β) can be determined by fitting Equation (1) with the experimental data obtained from the OA Z-scan. I_0 : the on-axis peak intensity at the focus (Z = 0), L_{eff} : the effective thickness of the sample, α is the linear absorption coefficient, and *I* is the sample thickness; *n is the refractive index; c*: the speed of light; the imaginary part of the third-order nonlinear optical susceptibility $lm\chi^{(3)}$ was calculated from the relation that $lm\chi^{(3)}$ is in proportion to β ; FOM could remove the discrepancy caused by the different linear absorption coefficient α . The relationship between the sample transmission and input laser intensity for a spatially Gaussian beam can be plotted from the open-aperture Z-scan curve. From the input laser pulse energy E_{in} and beam radius $\omega(z)$, the light fluence $F_{in}(z)$ at any position can be obtained.

$$T(Z, S = 1) = \frac{1}{\pi^{\frac{1}{2}}(Z, 0)} \int_{-\infty}^{\infty} \ln\left[1 + q_0(Z, 0)e^{-r^2}\right] dr$$
(1)

$$q_0(Z,0) = \beta I_0 L_{eff}$$
(2)

$$L_{eff} = \frac{1 - e^{-\alpha l}}{\alpha} \tag{3}$$

$$\omega(Z) = \frac{\omega_0}{\left[1 + \left(\frac{z}{z_0}\right)^2\right]^{-0.5}}$$
(4)

$$lm\chi^{(3)}(esu) = \left(\frac{10^{-7}n^2\lambda c}{96\pi^2}\right)\beta$$
(5)

$$F_{in}(z) = \frac{4E_{in}\sqrt{\ln 2}}{\pi^{\frac{3}{2}}\omega(z)^{2}}$$
(6)

$$FOM = \left|\frac{lm\chi^{(3)}}{\alpha}\right| \tag{7}$$

Table S3. Linear transmittance (T%), linear absorption coefficient (α), nonlinear absorption coefficient (β), imaginary part of third-order nonlinear susceptibility ($\chi^{(3)}_{l}$), FOM, and T at 0.02 J/cm² of the AlOC-126, AlOC-127, AlOC-128.

samples	T (%)	A (cm⁻¹)	β (cm/GW)	lmχ ⁽³⁾ ι (×10⁻	FOM	T at 0.02 J/cm ² (%)
				¹³ esu)		
AIOC-126	65	4.31	0.41	1.60	1.93	72
AlOC-127	65	4.31	0.58	2.27	2.73	67
AIOC-128	65	4.31	0.87	3.40	4.09	52

References

- 1. C.-B. Yao, K.-X. Zhang and X. Wen, Focus introduction: Z-scan technique, *Optik*, 2017, **140**, 680-682.
- Q.-F. Chen, X. Zhao, Q. Liu, J.-D. Jia, X.-T. Qiu, Y.-L. Song, D. J. Young, W.-H. Zhang and J.-P. Lang, Tungsten(VI)–Copper(I)–Sulfur Cluster-Supported Metal– Organic Frameworks Bridged by in Situ Click-Formed Tetrazolate Ligands, *Inorg. Chem.*, 2017, 56, 5669-5679.
- 3. D.-J. Li, Q.-h. Li, Z.-R. Wang, Z.-Z. Ma, Z.-G. Gu and J. Zhang, Interpenetrated Metal-Porphyrinic Framework for Enhanced Nonlinear Optical Limiting, *J. Am. Chem. Soc.*, 2021, **143**, 17162-17169.