## Supporting Information

In situ pyrazolylborate ligand synthesis and coordination behaviours in aluminum oxo clusters<br>Jian-Bing Chen, ${ }^{[a, b]}$ San-Tai Wang, ${ }^{[a, c]}$ Si-Hao Shen, ${ }^{[a, c]}$ Ying-Hua Yu, ${ }^{[a, c]}$ Wei-Hui Fang, ${ }^{[a]}$ and Jian Zhang*[a]<br>${ }^{a}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.<br>${ }^{b}$ School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 (P. R. China)<br>${ }^{\text {c }}$ University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100049, P. R. China.<br>E-mail: fwh@fjirsm.ac.cn; zhj@fjirsm.ac.cn

## Contents

$\qquad$Experimental SectionS2
PXRD analyses for Al-O-B clusters. ..... S7
FT-IR spectra of AI-O-B clusters ..... S9
EDS spectra of $\mathrm{Al}-\mathrm{O}-\mathrm{B}$ clusters. ..... S11
The solid-state absorption spectra of Al-O-B clusters ..... S12
TGA spectra of Al-O-B clusters ..... S13
Calculation of the nonlinear optical parameters. ..... S14
References ..... S15

## Experimental Section

All the reagents and solvents were commercially and used as received without further purification. Aluminium isopropoxide, pyrazole and 4-methylpyrazole were acquired from Aladdin Chemical Reagent Shanghai. Phenylboronic acid, 3,5-bis(Trifluoromethyl)benzeneboronic, 3-chlorophenylboronic acid, 3-fluorophenylboronic acid, 4-fluorophenylboronic acid, ethanol ( $\geq 99.5 \%$ ) and acetonitrile ( $\geq 99.5 \%$ ) were acquired from Sinopharm Chemical Reagent Beijing.

Synthesis of AIOC-126 $\left[\mathrm{Al}_{2}\left(\mathrm{~L}^{1}\right)_{2}\left(\mathrm{HL}^{1}\right)_{2} \cdot \mathrm{MeCN}\right]\left(\mathrm{L}^{1}=\mathrm{PhB}(\mu-\mathrm{O})(\mathrm{pz})_{2}\right)$

A mixture of aluminium isopropoxide (204 mg, 1 mmol ), phenylboronic acid (121 mg, 1 mmol ), pyrazole ( 2 g , $29.38 \mathrm{mmol})$ and acetonitrile ( 2 mL ) was sealed in a 20 mL vial and transferred to a preheated oven at $100^{\circ} \mathrm{C}$ for 5 days. When cooled to room temperature, block colourless crystals were obtained. (yield: $42 \%$ based on $\left.\mathrm{Al}(\mathrm{O} \operatorname{OPr})_{3}\right)$. The crystals are rinsed with ethanol and preserved under a sealed and dry environment. $\mathrm{FT}-\mathrm{IR}(\mathrm{KBr}$, $\mathrm{cm}^{-1}$ ): 1575(v), 1400(s), 1200(s), 1026(s), 769(s), 669(s), 495(s).

The synthesis of AIOC-126-1 $\left[\mathrm{Al}_{2}\left(\mathrm{~L}^{1^{\prime}}\right)_{2}\left(\mathrm{HL}^{1^{\prime}}\right)_{2} \cdot \mathrm{MeCN}\right]\left(\mathrm{L}^{1^{\prime}}=\left(3-\mathrm{F}-\mathrm{PhB}(\mu-\mathrm{O})(\mathrm{pz})_{2}\right), \mathrm{AIOC}-126-2\left[\mathrm{Al}_{2}\left(\mathrm{~L}^{1^{\prime \prime}}\right)_{2}\left(\mathrm{HL}^{1^{\prime \prime}}\right)_{2}\right]\left(\mathrm{L}^{1^{\prime \prime}}=(4-\right.\right.$ $\left.\mathrm{F}-\mathrm{PhB}(\mu-\mathrm{O})(\mathrm{pz})_{2}\right), \mathrm{AlOC-126-3}\left[\mathrm{Al}_{2}\left(\mathrm{~L}^{1^{\prime \prime \prime}}\right)_{2}\left(\mathrm{HL}^{1^{\prime \prime \prime}}\right)_{2}\right]\left(\mathrm{L}^{1^{\prime \prime \prime}}=\left(3-\mathrm{Cl}-\mathrm{Ph}\left(\mathrm{B}(\mu-\mathrm{O})(\mathrm{pz})_{2}\right)\right.\right.$ was replaced by different functionalized phenylboronic acids under the same synthesized conditions of AIOC-126.

Synthesis of AIOC-127 $\left.\left[\mathrm{Al}_{4}\left(\mathrm{~L}^{2}\right)_{4}\left(\mu_{3}-\mathrm{O}\right)\left(\mathrm{pz}^{2}-\mathrm{CH}_{3}\right)_{3}\right) \cdot \mathrm{MeCN}\right]\left(\mathrm{L}^{2}=\left(3,5-\mathrm{Bis}^{-} \mathrm{CF}_{3}-\mathrm{PhB}(\mu-\mathrm{O})\left(\mathrm{pz}-\mathrm{CH}_{3}\right)_{2}\right)\right.$
A mixture of aluminium isopropoxide ( $204 \mathrm{mg}, 1 \mathrm{mmol}$ ), 3,5-bis(Trifluoromethyl) benzeneboronic acid, (257 $\mathrm{mg}, 1 \mathrm{mmol})$, 4-methylpyrazole ( $2 \mathrm{~g}, 24.36 \mathrm{mmol}$ ) and acetonitrile ( 2 mL ) was sealed in a 20 mL vial and transferred to a preheated oven at $100{ }^{\circ} \mathrm{C}$ for 5 days. When cooled to room temperature, block colourless crystals were obtained. (yield: $21 \%$ based on $\mathrm{Al}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ ). The crystals are rinsed with ethanol and preserved under a sealed and dry environment. FT-IR (KBr, cm ${ }^{-1}$ ): 3320(m), 2927(v), 2362(m), 1392(m), 1274(s), 1107(s), 850(s), 680(s).

Synthesis of AIOC-128 $\left[\mathrm{Al}_{6}\left(\mathrm{~L}^{3}\right)_{6}\left(\mu_{3}-\mathrm{O}\right)_{2}\left(\mathrm{pz}-\mathrm{CH}_{3}\right)_{2}\right]\left(\mathrm{L}^{3}=\left(3-\mathrm{F}-\mathrm{PhB}(\mu-\mathrm{O})\left(\mathrm{pz}-\mathrm{CH}_{3}\right)_{2}\right)\right.$

A mixture of aluminium isopropoxide (204 $\mathrm{mg}, 1 \mathrm{mmol}$ ), 3-fluorophenylboronic acid ( $139 \mathrm{mg}, 1 \mathrm{mmol}$ ), 4methylpyrazole ( $2 \mathrm{~g}, 24.36 \mathrm{mmol}$ ) and acetonitrile ( 2 mL ) was sealed in a 20 mL vial and transferred to a preheated oven at $100^{\circ} \mathrm{C}$ for 5 days. When cooled to room temperature, block colourless crystals were obtained. (yield: 38\% based on $\mathrm{Al}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ ). The crystals are rinsed with ethanol and preserved under a sealed and dry environment. FT-IR (KBr, $\mathrm{cm}^{-1}$ ): 2923(s), 2360(m), 1571(v), 1394(m), 1420(s), 1234(s), 1107(s), 774(s).

## Z-scan measurements

The Z-scan technique ${ }^{1}$ was applied to investigate the nonlinear optical (NLO) behavior of the samples with an output wavelength of 532 nm . A picosecond light source irradiated by a PL2250 laser (EKSPLA) was a Q-switched Nd: YAG pulsed laser system having a pulse width of 30 ps , a repetition frequency of 10 Hz , a beam waist radius of $\omega_{0}$ of $23 \mu \mathrm{~m}$, and a Rayleigh length of 3.12 mm . Liquid samples were measured in 2 mm quartz cuvettes for testing. The cuvettes were mounted on a computer-controlled translation stage that shifted the samples along the $z$ axis and all test procedures were conducted at room temperature. For comparison, the linear transmittance of the sample was adjusted to be $\sim 65 \%$.

## X-Ray crystallographic analysis

Crystallographic data of crystal AIOC-126, AIOC-126-1, AIOC-126-2, AIOC-126-3, AIOC-127 and AIOC-128 were collected on Hybrid Pixel Array detector equipped with Ga-K $\alpha$ radiation ( $\lambda=1.3405 \AA \AA$ ) at about 293 K. The structures were solved with the dual-direct methods using ShelXT and refined with the full-matrix least-squares technique based on $F^{2}$ with the SHELXL. Non-hydrogen atoms were refined anisotropically, while hydrogen atoms were added theoretically, riding on the concerned atoms and refined with fixed thermal factors. All absorption corrections were performed using the multi-scan program. The obtained crystallographic data are summarized in Table S1.

Table S1. Crystal data and structure refinement results (AIOC-126, AIOC-126-1, AIOC-126-2, AIOC-126-3, AIOC-127, AIOC-128)

| Compound | AlOC-126 | AlOC-127 | AlOC-128 |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{50} \mathrm{H}_{49} \mathrm{Al}_{2} \mathrm{~B}_{4} \mathrm{~N}_{17} \mathrm{O}_{4}$ | $\mathrm{C}_{78} \mathrm{H}_{61} \mathrm{Al}_{4} \mathrm{~B}_{4} \mathrm{~F}_{24} \mathrm{~N}_{23} \mathrm{O}_{5}$ | $\mathrm{C}_{92} \mathrm{H}_{94} \mathrm{Al}_{6} \mathrm{~B}_{6} \mathrm{~F}_{6} \mathrm{~N}_{28} \mathrm{O}_{8}$ |
| Mr | 1065.49 | 2055.71 | 2128.69 |
| Temperature(K) | $293(2)$ | $293(2)$ | $293(2)$ |
| Wavelength (Å) | 1.34050 | 1.34050 | 1.34050 |
| Crystal system | triclinic | triclinic | monoclinic |
| Space group | $P-1$ | $P-1$ | $C 2 / c$ |
| $a / \AA \AA$ | $11.9881(2)$ | $14.79590(10)$ | $18.8931(3)$ |
| $b / \AA \AA$ | $12.4767(2)$ | $15.0054(2)$ | $20.5399(3)$ |
| $c / \AA$ | $21.5093(3)$ | $22.6105(3)$ | $27.5824(5)$ |
| $\alpha /{ }^{\circ}$ | $100.2750(10)$ | $81.1480(10)$ | 90 |
| $B /{ }^{\circ}$ | $97.0680(10)$ | $82.3220(10)$ | $91.246(2)$ |
| $\gamma /{ }^{\circ}$ | $117.664(2)$ | $68.3070(10)$ | 90 |
| $V / \AA^{\circ}$ | $2724.37(9)$ | $4592.75(10)$ | $10701.2(3)$ |


| $Z$ | 2 | 2 | 8 |
| :---: | :---: | :---: | :---: |
| $\rho / \mathrm{g} \mathrm{cm}^{-3}$ | 1.299 | 1.536 | 1.321 |
| $\mu / \mathrm{mm}^{-1}$ | 0.632 | 2.000 | 0.800 |
| F(000) | 1112.0 | 2064.0 | 4416.0 |
| Collected reflns | 39228 | 97698 | 39249 |
| Unique reflns ( $R_{\text {int }}$ ) | 12289(0.0327) | 20483(0.0407) | 11920(0.0504) |
| Completeness | 1 | 1 | 1 |
| GOF on $F^{2}$ | 1.093 | 1.033 | 1.082 |
| $R_{1}{ }^{\text {a }} / w R_{2}{ }^{\text {b }}$ [ $/>2$ (I) $]$ | 0.0430/0.1171 | 0.0807/0.2417 | 0.0596/0.1563 |
| CCDC number | 2234657 | 2234659 | 2234656 |
| ${ }^{\mathrm{a}} R_{1}=\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| / \Sigma\left\|F_{\mathrm{o}}\right\|^{\mathrm{b}} w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$ |  |  |  |
| Compound | AIOC-126-1 | AIOC-126-2 | AIOC-126-3 |
| Formula | $\mathrm{C}_{50} \mathrm{H}_{45} \mathrm{Al}_{2} \mathrm{~B}_{4} \mathrm{~F}_{4} \mathrm{~N}_{17} \mathrm{O}_{4}$ | $\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{Al}_{2} \mathrm{~B}_{4} \mathrm{~F}_{4} \mathrm{~N}_{16} \mathrm{O}_{4}$ | $\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{Al}_{2} \mathrm{~B}_{4} \mathrm{Cl}_{4} \mathrm{~N}_{16} \mathrm{O}_{4}$ |
| Mr | 1119.21 | 1080.17 | 1144.97 |
| Temperature(K) | 293(2) | 293(2) | 293(2) |
| Wavelength ( A ) | 1.34050 | 1.34050 | 1.34050 |
| Crystal system | triclinic | monoclinic | triclinic |
| Space group | P-1 | $P 2_{1} / \mathrm{c}$ | P-1 |
| $a / A ̊$ | 12.1335(3) | 16.8343(4) | 11.7060(2) |
| b/Å | 12.5287(3) | 14.6616(3) | 19.7341(3) |
| $c / A$ | 21.5352(4) | 21.2160(4) | 24.0968(3) |
| $\alpha /{ }^{\circ}$ | 97.791(2) | 90 | 107.4400(10) |
| $6{ }^{\circ}$ | 99.012(2) | 92.643(2) | 90.4670(10) |
| V/ ${ }^{\circ}$ | 118.010(3) | 90 | 90.8220(10) |
| $V / A^{3}$ | 2771.26(13) | 5230.92(19) | 5309.65(14) |
| $Z$ | 2 | 4 | 4 |
| $\rho / \mathrm{g} \mathrm{cm}^{-3}$ | 1.341 | 1.372 | 1.432 |
| $\mu / \mathrm{mm}^{-1}$ | 0.707 | 0.732 | 1.854 |
| F(000) | 1152.0 | 2224.0 | 2348.0 |
| Collected refins | 26284 | 37476 | 66642 |
| Unique reflns ( $R_{\text {int }}$ ) | 9974(0.0201) | 11474(0.0565) | 23305(0.0699) |
| Completeness | 0.99 | 0.98 | 0.99 |
| GOF on $F^{2}$ | 1.062 | 1.068 | 1.061 |
| $R_{1}{ }^{\text {a }} / w R_{2}{ }^{\text {b }}$ [ $\left./>2(I)\right]$ | 0.0424/0.1215 | 0.0692/0.1822 | 0.0879/0.2498 |
| CCDC number | 2234654 | 2234655 | 2234658 |
| ${ }^{\mathrm{a}} R_{1}=\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| / \Sigma\left\|F_{\mathrm{o}}\right\|^{\mathrm{b}} w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$ |  |  |  |



Fig. S1 Schematic diagram of the combination of L and $\mathrm{Al}^{3+}$ in the AIOC-126, AIOC-127, AIOC-128.



AlOC-126


Fig. S2 Coordination environment of $\mathrm{Al}^{13+}$ ions and $\mathrm{B}-\mathrm{O}-\mathrm{Al}$ unit in AIOC-126. Color code: Al , green; $C$, black; $O$, red; $N$, blue; $B$, yellow.



Fig. S3 Coordination environment of $\mathrm{Al}^{3+}$ ions and $\mathrm{B}-\mathrm{O}-\mathrm{Al}$ unit in AIOC-127. Color code: Al , green; $C$, black; O , red; $N$, blue; $B$, yellow; $F$, green.






Fig. S4 Coordination environment of $\mathrm{Al}^{3+}$ ions and $\mathrm{B}-\mathrm{O}-\mathrm{Al}$ unit in AIOC-128. Color code: Al , green; C, black; O, red; N, blue; B, yellow; F, green.


Figure S5. Packing diagrams of AIOC-126 in the view of (a) a-axis and (b) c-axis.


Figure S6. Packing diagrams of AIOC-127 in the view of (a) a-axis and (b) c-axis.


Figure S7. Packing diagrams of AIOC-128 in the view of (b) a-axis and (c) c-axis.


Figure S8. The hydrogen bond interactions ( $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ ) between F on benzene ring and $\mathrm{C}-\mathrm{H}$ on 4 methylpyrazole in the AIOC-127 and AIOC-128. Color code: Al, green; C, black; O, red; N, blue; B, yellow; F, green; H, white.

## PXRD analyses for Al-O-B clusters



Figure S9. PXRD patterns of AIOC-126.


Figure S10. PXRD patterns of AIOC-126-1.


Figure S11. PXRD patterns of AIOC-126-2.


Figure S12. PXRD patterns of AIOC-126-3.


Figure S13. PXRD patterns of AIOC-127.


Figure S14. PXRD patterns of AIOC-128.

## FT-IR spectra of Al-O-B clusters



Figure S15. FT-IR spectra of AIOC-126.


Figure S16. FT-IR spectra of AIOC-127.


Figure S17. FT-IR spectra of AIOC-128.
It can be seen from the Fig. S15-S17 that AIOC-126 has an $\delta_{\text {он }}$ peak because of the incompletely protonated Lexists in AIOC-126. Given that the introduction of functional groups F into the benzene ring and 4-methylpyrazole, AIOC-127 and AIOC-128 have $v_{(C-F)}$ and $v(C-H)$ in $-\mathrm{CH}_{3}$ peaks than AIOC-126.

## EDS spectra of Al-O-B clusters



Figure S18. EDS spectra of AIOC-126.


Figure S19. EDS spectra of AIOC-127.


Figure S20. EDS spectra of AIOC-128.

The solid-state absorption spectra of Al-O-B clusters.


Figure S21. The solid-state absorption spectra of AIOC-126.


Figure S22. The solid-state absorption spectra of AIOC-127.


Figure S23. The solid-state absorption spectra of AIOC-128.

TGA spectra of Al-O-B clusters.


Figure S24. TGA spectra of AIOC-126, AIOC-127, AIOC-128.
The thermal stability of AIOC-126 to AIOC-128 was investigated in $\mathrm{N}_{2}$ atmosphere up to $800^{\circ} \mathrm{C}$ with a heating rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$, which is presented in Fig. S24. There are similar structures and compositions in AIOC-126 to AIOC-128, so only the TG investigation of AIOC-127 was described in detail. AIOC-127 with tetranuclear configuration can be stabilized at $217^{\circ} \mathrm{C}$ before weight loss begins. It reveals a weight loss ( $6.7 \%$ ) between $217{ }^{\circ} \mathrm{C}$ and $340{ }^{\circ} \mathrm{C}$ can be attributed to the removal of $\mathrm{CH}_{3} \mathrm{CN}$. The weight loss (64.5\%) between $340{ }^{\circ} \mathrm{C}$ and $620^{\circ} \mathrm{C}$ is assigned to the departure of the organic ligand owning to degradation of the structure.

Table S2. BVS analysis for AIOC-126.

| Al01 3.328 |  | Al02 3.334 |  | 00041.316 |  | OOAA 1.312 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Al01-0003 | 1.8607 | Al02-0003 | 1.8698 | Al01-0004 | 1.8846 | Al02-O0AA | 1.8903 |
| Al01-0004 | 1.8846 | Al02-0005 | 1.8468 | B01I- 0004 | 1.461 | B01Q-00AA | 1.459 |
| Al01-0005 | 1.8825 | Al02-O0AA | 1.8903 |  |  |  |  |
| Al01-N007 | 1.9743 | Al02-N00D | 1.9699 |  |  |  |  |
| Al01-N009 | 1.9762 | Al02-N00E | 2.0762 |  |  |  |  |
| Al01-N00B | 2.0570 | Al02-NOOL | 1.9847 |  |  |  |  |

The following values are calculated and simulated according to the reported literature. ${ }^{2,3}$ The nonlinear absorption coefficient $(\beta)$ can be determined by fitting Equation (1) with the experimental data obtained from the OA Z-scan. $I_{0}$ : the on-axis peak intensity at the focus $(Z=0), L_{e f f}$ : the effective thickness of the sample, $\alpha$ is the linear absorption coefficient, and $/$ is the sample thickness; $n$ is the refractive index; $c$ : the speed of light; the imaginary part of the third-order nonlinear optical susceptibility $\operatorname{lm} \chi^{(3)}$ was calculated from the relation that $\operatorname{lm} \chi^{(3)}$ is in proportion to $\beta$; FOM could remove the discrepancy caused by the different linear absorption coefficient $\alpha$. The relationship between the sample transmission and input laser intensity for a spatially Gaussian beam can be plotted from the open-aperture Z-scan curve. From the input laser pulse energy $E_{i n}$ and beam radius $\omega(z)$, the light fluence $F_{\text {in }}(z)$ at any position can be obtained.

$$
\begin{equation*}
T(Z, S=1)=\frac{1}{\pi^{\frac{1}{2}}(Z, 0)} \int_{-\infty}^{\infty} \ln \left[1+q_{0}(Z, 0) e^{-r^{2}}\right] d r \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& q_{0}(Z, 0)=\beta I_{0} L_{e f f}  \tag{2}\\
& L_{e f f}=\frac{1-e^{-\alpha l}}{\alpha} \tag{3}
\end{align*}
$$

$\omega(Z)=\frac{\omega_{0}}{\left[1+\left(\frac{z}{z_{0}}\right)^{2}\right]-0.5}$

$$
\begin{equation*}
\operatorname{lm} \chi^{(3)}(e s u)=\left(\frac{10^{-7} n^{2} \lambda c}{96 \pi^{2}}\right) \beta \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
F_{i n}(z)=\frac{4 E_{i n} \sqrt{\ln 2}}{\pi^{\frac{3}{2}} \omega(z)^{2}} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
F O M=\left|\frac{l m \chi^{(3)}}{\alpha}\right| \tag{7}
\end{equation*}
$$

Table S3. Linear transmittance (T\%), linear absorption coefficient ( $\alpha$ ), nonlinear absorption coeffificient ( $\beta$ ), imaginary part of third-order nonlinear susceptibility $\left.\left(\chi^{(3)}\right)_{1}\right)$, FOM, and T at 0.02 $\mathrm{J} / \mathrm{cm}^{2}$ of the AIOC-126, AIOC-127, AIOC-128.

| samples | $\mathrm{T}(\%)$ | $\mathrm{A}\left(\mathrm{cm}^{-1}\right)$ | $\beta(\mathrm{cm} / \mathrm{GW})$ | $\mathrm{Im} \chi^{(3)} \mathrm{I}_{1} \times 10^{-}$ <br> 13 <br> AIOC-126 | 65 | 4.31 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIOC-127 | 65 | 4.31 | 0.41 | 0.58 | 1.60 | 1.93 |
| AIOC-128 | 65 | 4.31 | 0.87 | 2.27 | 2.73 | 72 |

## References

1. C.-B. Yao, K.-X. Zhang and X. Wen, Focus introduction: Z-scan technique, Optik, 2017, 140, 680-682.
2. Q.-F. Chen, X. Zhao, Q. Liu, J.-D. Jia, X.-T. Qiu, Y.-L. Song, D. J. Young, W.-H. Zhang and J.-P. Lang, Tungsten(VI)-Copper(I)-Sulfur Cluster-Supported MetalOrganic Frameworks Bridged by in Situ Click-Formed Tetrazolate Ligands, Inorg. Chem., 2017, 56, 5669-5679.
3. D.-J. Li, Q.-h. Li, Z.-R. Wang, Z.-Z. Ma, Z.-G. Gu and J. Zhang, Interpenetrated Metal-Porphyrinic Framework for Enhanced Nonlinear Optical Limiting, J. Am. Chem. Soc., 2021, 143, 17162-17169.
