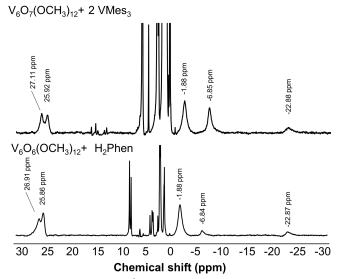

Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Electronic Supporting Information Accelerated Rates of Proton Coupled Electron Transfer to Oxygen Deficient Polyoxovanadate-alkoxide Clusters


Shannon E. Cooney[†], Eric Schreiber[†], William W. Brennessel, and Ellen M. Matson* Department of Chemistry, University of Rochester, Rochester NY 14627 USA

Supporting Information Table of Contents:

Figure S1. ¹ H NMR spectrum of the reaction of $[V_6O_7]^0$ with two equivalents of 5,10-dihydrophenazine (H ₂ Phen) at 294 K in CI	D ₃ CN
after 3 minutes	
Figure S2. ¹ H NMR spectrum comparing syntheses for [V ₆ O ₅ (MeCN) ₂] ⁰ at 294 K in CD ₃ CN	
Figure S3. ¹ H NMR spectrum of $[V_6O_7]^0$ with one equivalent of hydrazobenzene (Hydz) at 294 K in THF-d ₈	
Figure S4. ¹ H NMR spectra of $[V_6O_6(MeCN)]^0$ (blue, bottom) and $[V_6O_6(OH_2)]^0$ (purple, top) at 294 K in THF-d ₈	
Table S1. Crystallographic parameters of the molecular structure obtained for complex [V ₆ O ₆ (OH ₂)] ⁰ . THF ₂	S4
Table S2. Bond valence sum calculations on the V ions of $[V_6O_6(OH_2)]^0$	S4
Figure S5. Electronic absorption spectrum of [V ₆ O ₆ (OH ₂)] ⁰ recorded at 294 K in THF	S5
Figure S6. ¹ H NMR spectra of reactions of 1,4-dihydroxynaphthalene (H ₂ Naphth) with [V ₆ O ₇] ⁰ at various reductant:cluster ratios for 7 days recorded in THF-d ₈ at 294 K	S5
Figure S7. ¹ H NMR spectrum of the reaction of $[V_6O_7]^0$ with one equivalent of H ₂ Naphth at 294 K in THF-d ₈	S6
Table S3. BDFE _{adj} calculated from equilibrium reactions described in Figure S6	
Figure S8. ¹ H NMR spectrum of [V ₆ O ₅ (OH ₂)(MeCN)] ⁰ at 294 K in THF-d ₈	S8
Figure S9. ¹ H NMR spectra of the reaction of Hydz with one equivalent of [V ₆ O ₆ (MeCN)] ⁰ at 294 K after 5 min and 1 day recorded in THF-d ₈ at 294 K	
Figure S10. ¹ H NMR spectra of reactions of Hydz with one equivalent of [V ₆ O ₆ (MeCN)] ⁰ at 294 K , diamagnetic region, trial A-C recorded in THF-d ₈ .	
Table S4. BDFE _{adj} of calculated from equilibrium reactions described in Figure S9	S9
Figure S11. CV of 2 mM H ₂ Phen (purple) and Phen (orange) in THF	S9
Figure S12. CV of 1 mM [V ₆ O ₇] ⁰ (green), [V ₆ O ₆ (MeCN)] ⁰ (purple), [V ₆ O ₆ (OH ₂)] ⁰ (orange), and [V ₆ O ₅ (MeCN)(OH ₂)] ⁰ (red) in THF.	
Table S5. Redox potentials of $[V_6O_7]^0$, $[V_6O_6(MeCN)]^0$, $[V_6O_6(OH_2)]^0$, $[V_6O_5(MeCN)(OH_2)]^0$, Phen, and H ₂ Phen	
Table S6. Determination of the average pK _a 's of H ₂ Phen, " $[V_6O_6(OH_2)]^{2+*}$, and " $[V_6O_5(MeCN)(OH_2)]^{2+*}$ in THF using the	510
Bordwell Equation	. S11
Figure S13. Electronic absorption spectrum of [V ₆ O ₅ (OH ₂)(MeCN)] ⁰ , grey dotted trace and [V ₆ O ₅ (MeCN) ₂] ⁰ , red trace, recorded at 21 °C in THF	
Figure S14. UV-Vis NIR of $[V_6O_6(MeCN)]^0 + 1$ eq H ₂ Phen over time at 238 K in MeCN	S12
Figure S15. Plot of absorbance at 900 nm over time for $[V_6O_6(MeCN)]^0$ (0.75 mM) and H ₂ Phen (3.8 mM) under pseudo-first	512
order conditions in CH ₃ CN at 258 K	S12
Figure S16. Plot of absorbance at 900 nm over time for [V ₆ O ₆ (MeCN)] ⁰ (0.75 mM) and H ₂ Phen (5.0 mM) under pseudo-first order conditions in CH ₃ CN at 258 K	S13
Figure S17. Plot of absorbance at 900 nm over time for [V ₆ O ₆ (MeCN)] ⁰ (0.75 mM) and H ₂ Phen (6.4 mM) under pseudo-first order conditions in CH ₃ CN at 258 K	S 13
Figure S18. Plot of absorbance at 900 nm over time for $[V_6O_6(MeCN)]^0$ (0.75 mM) and H ₂ Phen (7.5 mM) under pseudo-first	
order conditions in CH ₃ CN at 258 K	S14
Figure S19. Plot of absorbance at 900 nm over time for $[V_6O_6(MeCN)]^0$ (0.75 mM) and H ₂ Phen (8.9 mM) under pseudo-first	
order conditions in CH ₃ CN at 258 K	814
Figure S20. Plots of absorbance at 900 nm over time for [V ₆ O ₆ (MeCN)] ⁰ (0.75 mM) and D ₂ Phen (3.75 mM) under pseudo-first order conditions in CH ₃ CN at 258 K	S15
Figure S21. Plots of absorbance at 900 nm over time for [V ₆ O ₆ (MeCN)] ⁰ (0.75 mM) and D ₂ Phen (4.73 mM) under pseudo-first	
order conditions in CH ₃ CN at 258 K	S15
Figure S22. Plots of absorbance at 900 nm over time for $[V_6O_6(MeCN)]^0$ (0.75 mM) and D ₂ Phen (6.04 mM) under pseudo-first	
order conditions in CH ₃ CN at 258 K.	\$16
Figure S23. Plots of absorbance at 900 nm over time for [V ₆ O ₆ (MeCN)] ⁰ (0.75 mM) and D ₂ Phen (9.06 mM) under pseudo-first order conditions in CH ₃ CN at 258 K	S16
Figure S24. Plots of absorbance at 900 nm over time for [V ₆ O ₆ (MeCN)] ⁰ (0.75 mM) and D ₂ Phen (10.1 mM) under pseudo-first	
order conditions in CH ₃ CN at 258 K	S16
Figure S25. Plots of absorbance at 900 nm over time for $[V_6O_6(MeCN)]^0$ (0.75 mM) and H ₂ Phen (7.26 mM) in CH ₃ CN at 288 K	\$17
Figure S26. Plots of absorbance at 900 nm over time for $[V_6O_6(MeCN)]^0$ (0.75 mM) and H ₂ Phen (7.26 mM) in CH ₃ CN at 268 K	
Figure S27. Plots of absorbance at 900 nm over time for [V ₆ O ₆ (MeCN)] ⁰ (0.75 mM) and H ₂ Phen (7.26 mM) in CH ₃ CN at 248	
К	S17
Figure S28. Plots of absorbance at 900 nm over time for $[V_6O_6(MeCN)]^0$ (0.75 mM) and H ₂ Phen (7.26 mM) in CH ₃ CN at 238 K	
Figure S29. Plot of [V ₆ O ₆ (MeCN)] ⁰ + H ₂ Phen at 258 K at 900 nm over time, second order experiment conditions	
References	

Figure S1. ¹H NMR spectrum of the reaction of $[V_6O_7]^0$ with two equivalents of 5,10dihydrophenazine (H₂Phen) at 294 K in CD₃CN after 3 minutes. Orange triangle represent H₂O (2.13 in CD₃CN) product and yellow star denotes phenazine.

Figure S2. ¹H NMR spectrum of $[V_6O_7]^0 + 2$ equivalents of VMes₃(THF) (2019, top)¹ and the synthesis of $[V_6O_5(MeCN)_2]^0$ using 2 equivalents of HAT reagent (H₂Phen) (2023, bottom) at 294 K in CD₃CN.

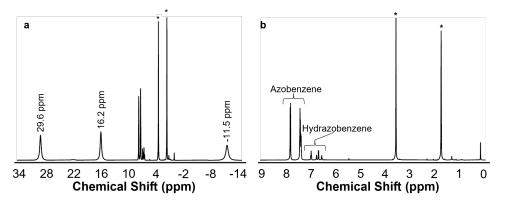


Figure S3. ¹H NMR spectrum of the reaction of $[V_6O_7]^0$ with one equivalent of hydrazobenzene (Hydz) at 294 K in THF-d₈, a- paramagnetic region showing the three peaks associated with $[V_6O_6(OH_2)]^0$, b- diamagnetic region showing the formation of azobenzene and residual hydrazobenzene. Notable in this crude reaction mixture is the lack of formation of H₂O, indicating it remains bound to the cluster.

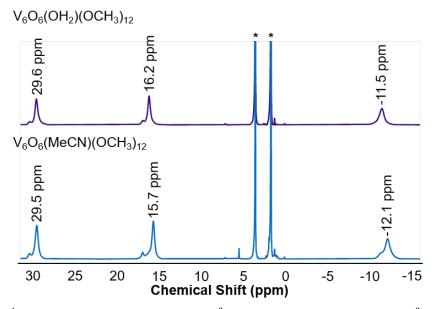


Figure S4. ¹H NMR spectra of $[V_6O_6(MeCN)]^0$ (blue, bottom) and $[V_6O_6(OH_2)]^0$ (purple, top) at 294 K in THF-d₈.

Compound	[V ₆ O ₆ (OH ₂)]·THF ₂
Empirical formula	C ₂₀ H ₅₄ O ₂₁ V ₆
Formula weight	936.27
Temperature / K	100.00(10)
Wavelength / Å	1.54184
Crystal group	Triclinic
Space group	P-1
Unit cell dimensions	a = 92190(2) Å b = 10.6059(2) Å c = 18.4535(2) Å $a = 96.3890(10)^{\circ}$ $\beta = 90.1810(10)^{\circ}$ $\gamma = 91.4940(10)^{\circ}$
Volume / Å ³	1792.46(6)
Ζ	2
Reflections collected	54875
Independent reflections	7646
Completeness (theta)	99.4% (74.504°)
Goodness-of-fit on F^2	1.117
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	<i>R</i> 1 = 0.0360
Largest diff. peak and hole	0.535 and -0.490 e.Å ⁻³

Table S1. Crystallographic parameters of the molecular structure obtained for complex $[V_6O_6(OH_2)]$ ·THF₂.

Table S2. Bond valence sum calculations on the V ions of $[V_6O_6(OH_2)]^0$.

Oxidation State	V1 ^a	V2	V3	V4	V5	V6
V ^{III}	3.067	3.885	3.936	3.909	3.939	4.421
V ^{IV}	3.141	3.978	4.030	4.002	4.033	4.526
V^V	3.376	4.242	4.297	4.267	4.299	4.820

^aV1 bears a terminal aquo ligand

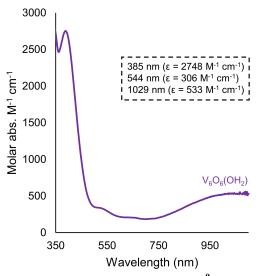
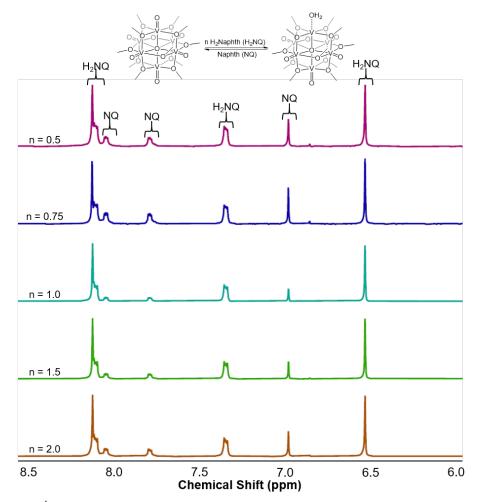



Figure S5. Electronic absorption spectrum of $[V_6O_6(OH_2)]^0$ recorded at 294 K in THF, bands are labeled in figure inset.

Figure S6. ¹H NMR spectra of reactions of 1,4-dihydroxynaphthalene (H₂Naphth) with $[V_6O_7]^0$ at various reductant:cluster ratios at 21 °C for 7 days recorded in THF-d₈ at 294 K.

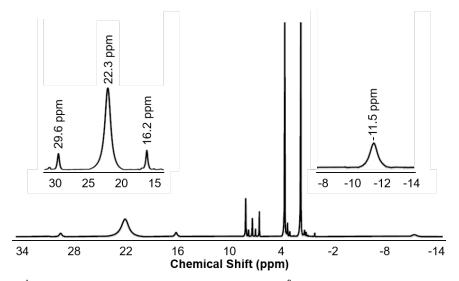


Figure S7. ¹H NMR spectrum of the reaction of $[V_6O_7]^0$ with one equivalent of H₂Naphth at 294 K after 7 days in THF-d₈.

				BDFE _{adj}	(kcal/mol)	62.4	62.4	62.3	62.2	62.2	62.3	0.1			
			A	Avg. Conc.		0.47	0.50	0.51	0.49	0.49					
1841 A DA			i (2 H)		Conc. ^a	0.42	0.43	0.46	0.44	0.44	Avg.	Std. Dev.			
	text.	ne	7.0 ppm (2 H)		Integral	0.84	0.86	0.91	0.87	0.88		•1			
	he main	Naphthoquinone	7.8 ppm (2 H)		Conc. ^a	0.46	0.5	0.5	0.5	0.5	ing the	0			
0110001 II	ction in t	Napl	7.8 ppm		Integral Conc. ^{<i>a</i>} Integral Conc. ^{<i>a</i>} Integral Conc. ^{<i>a</i>}	0.91	1.00	1.00	1.00	1.00	led by divid	•			
and be that the found in the Freetimental section in the main feature in the main text	Experimental sec		(2 H)		Conc. ^a	0.54	0.56	0.58	0.53	.525	as determir				
					8.0 ppm (2 H)		Integral	1.07	1.12	1.16	1.05	1.05	oquinone w		
	d in the	1,4-Dihydroxynaphthalene	~ v	Ave.	COLC.	0.87	1.09	1.23	1.74	2.15	e or naphth	ponds with			
	1 outline		1,4-Dihydroxynaphthalene	(2 H)		Conc. ^a	0.85	1.08	1.24	1.74	2.15	'naphthalen	al(s) corres		
ר איזערא ז	equation			1,4-Dihydroxynaphthalene	hthalene	(2 H) 6.5 ppm (2 H)		Conc. ^{<i>a</i>} Integral Conc. ^{<i>a</i>}	1.70	2.15	2.48	3.47	4.29	l-dihvdroxv	a given sign
ous list rad out and the c	sing the				n (2 H)		Conc. ^a	0.88	1.09	1.23	1.74	2.15	of either 1,4-dihydroxynaphthalene or naphthoquinone was determined by dividing the of motions a given signal(s) corresponds with	of protons a	
	n				1,4-Dihyc	7.3 ppm (Integral	1.76	2.17	2.46	3.48	4.30	ncentration	the number
			8.1 ppm (4 H)		Conc. ^a	0.87	1.10	1.23	1.76	2.15	^a Relative concentration of	integral by the number of protons a given signal(s) corresponds with.			
			8.1 ppn		Integral Conc. ^a	3.47	4.40	4.92	7.03	8.61	a]	ŗ			
	I				u	0.5	0.75	1.0	1.5	2.0					

Table S3. BDFE_{adj} calculated for $[V_6O_6(OH_2)]^0$ from equilibrium reactions described in Figure S6,

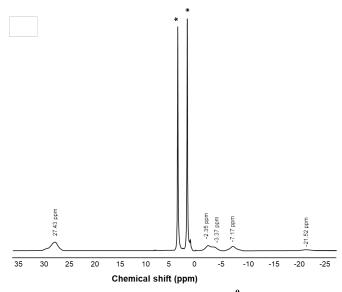
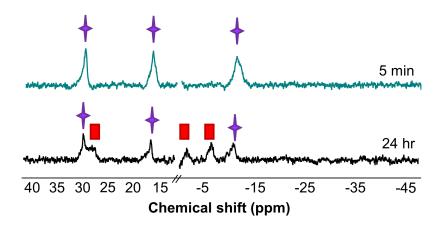
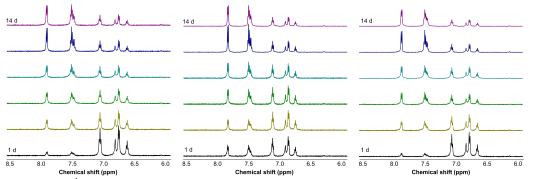
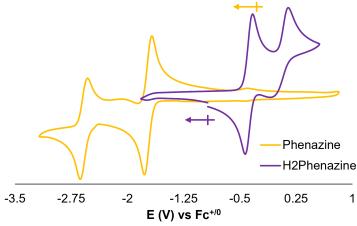




Figure S8. ¹H NMR spectrum of $[V_6O_5(OH_2)(MeCN)]^0$ at 294 K in THF-d₈ (indicated by asterisks).


Figure S9. ¹H NMR spectra in the paramagnetic region of reaction of Hydz with one equivalent of $[V_6O_6(MeCN)]^0$ at 21°C for after 5 min (top, teal) and 1 day (bottom, black) recorded in THF-d₈ at 294 K. Purple stars indicate starting material $[V_6O_6(MeCN)]^0$ and red squares indicate the formation of $[V_6O_5(MeCN)(OH_2)]^0$.

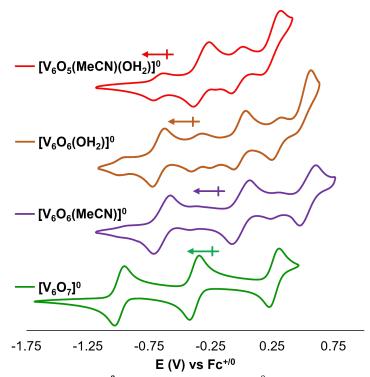

Figure S10. ¹H NMR spectra in the diamagnetic region of reaction of Hydz with one equivalent of $[V_6O_6(MeCN)]^0$ at 294 K, over 14 days in THF-d₈, trial A-C (left to right). Growth of oxidized organic reagent (Azo) is seen at 7.5 and 7.9 ppm.

Table S4. BDFE_{adj} calculated for $[V_6O_5(MeCN)(OH_2)]^0$ from equilibrium reactions described in Figure S9, using the equation outlined in the Experimental section in the main text.

		Hydi	razobenze	ne		Azobenzene ^b					
	7.06 pp	m (4 H)	6.77 рр	m (6 H)	Avg.	7.92 рр	.92 ppm (4 H) 7.52 ppm (6 H)				
Trial	Internal	Relative	Internal	Relative	Conc.	Internal	Relative	Internal	Relative	Avg. Conc.	BDFE _{adj}
1 riai	Integral	Conc. ^a	Integral	Conc. ^a		Integral	Conc. ^a	Integral	Conc. ^a	Conc.	(kcal/mol)
Α	0.52	0.13	0.70	0.116	0.125	1	0.25	1.55	0.258	0.254	60.6
В	0.50	0.125	0.63	0.105	0.115	1	0.25	1.55	0.258	0.254	60.7
С	0.45	0.113	0.54	0.09	0.102	1	0.25	1.58	0.263	0.256	60.7
^a Relati	ve concentration of either hydrazobenzene or azobenzene was determined by dividing the integral Avg.								60.7		
				s) correspon			5	U	0	Std.	0.1
										Dev.	0.1

Figure S11. CV of 2 mM H₂Phen (purple) and Phen (orange) collected at 100 mVs⁻¹ in THF with 200 mM [ⁿBu₄N][PF₆] supporting electrolyte.

Figure S12. CV of 1 mM $[V_6O_7]^0$ (green), $[V_6O_6(MeCN)]^0$ (purple), $[V_6O_6(OH_2)]^0$ (orange), and $[V_6O_5(MeCN)(OH_2)]^0$ (red) collected at 100 mVs⁻¹ in THF with 200 mM [ⁿBu₄N][PF₆] supporting electrolyte versus Fc^{+/0}. Due to electrochemical instability of the O-atom deficient species, some features of the corresponding oxidized complex are observed on the CV timescale.

Table S5. Redox potentials of $[V_6O_7]^0$, $[V_6O_6(MeCN)]^0$, $[V_6O_6(OH_2)]^0$, $[V_6O_5(MeCN)(OH_2)]^0$, Phen, and H₂Phen from CVs in Figure S12 (vs Fc^{+/0}). The position of the open circuit voltage is denoted by the red border lines

$[V_6O_7]^0$	[V ₆ O ₆ (MeCN)] ⁰	[V ₆ O ₆ (OH ₂)] ⁰	[V ₆ O ₅ (MeCN)(OH ₂)] ⁰	Phen	H ₂ Phen
-0.994	-0.646	-0.674	-0.325	-2.57	-0.387
-0.385	-0.0197	-0.0231	0.222	-1.72	0.0240
0.267	0.523	0.467	-	-	-

Compound	BDFE (kcal mol ⁻¹)	E ⁰ <i>a</i> (V, vs Fc ^{+/0})	E⁰ (avg) (V, vs Fc ^{+/0})	C _G (kcal mol ⁻¹)	pKa
H ₂ Phen	59.2	-1.72, -2.57	-2.15	59.9	35.6
"[V ₆ O ₅ (MeCN)(OH ₂)] ²⁺ "	60.7	-0.646, -0.0197	-0.0514	59.9	1.45
"[V ₆ O ₆ (OH ₂)] ²⁺ "	62.3	-0.0231, 0.467	0.222	59.9	-1.98

Table S6. Determination of the average pK_a 's of H_2 Phen, " $[V_6O_6(OH_2)]^{2+}$ ", and " $[V_6O_5(MeCN)(OH_2)]^{2+}$ " in THF using the Bordwell Equation.

^{*a*} 1e⁻ redox potentials of respective species. For H₂Phen, the reduction events of Phen were used. For cluster species, the oxidation potentials of the $[V_6O_5(MeCN)(OH_2)]^0$ and $[V_6O_6(OH_2)]^0$ were used.

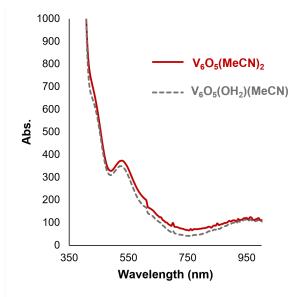
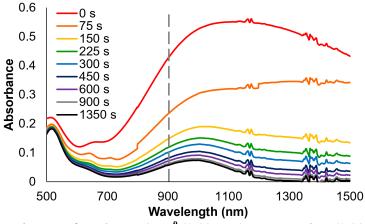
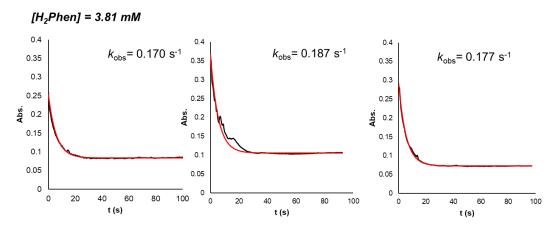
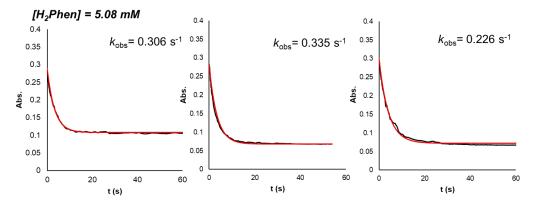


Figure S13. Electronic absorption spectrum of $[V_6O_5(OH_2)(MeCN)]^0$, grey dotted trace and $[V_6O_5(MeCN)_2]^0$, red trace, recorded at 21 °C in THF.

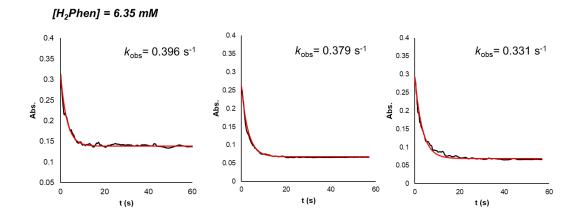

Figure S14. UV-Vis NIR of $[V_6O_6(MeCN)]^0$ (0.83 mM)+ 1 eq H₂Phen (0.83 mM) over time at 238 K in MeCN.

Figure S15. Plot of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and excess H₂Phen (3.81 mM) under pseudo-first order conditions recorded in CH₃CN at 258 K, with raw data (black) and a fit curve (red). Concentration of H₂Phen for each reaction is noted, alongside the fit-derived k_{obs}. Triplicate data sets are reported.

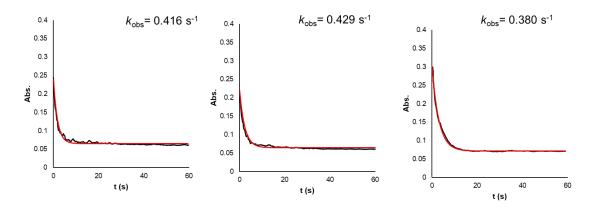


Figure S16. Plot of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and excess H₂Phen (5.08 mM) under pseudo-first order conditions recorded in CH₃CN at 258 K, with raw data (black) and a fit curve (red). Concentration of H₂Phen for each reaction is noted, alongside the fit-derived k_{obs}. Triplicate data sets are reported.

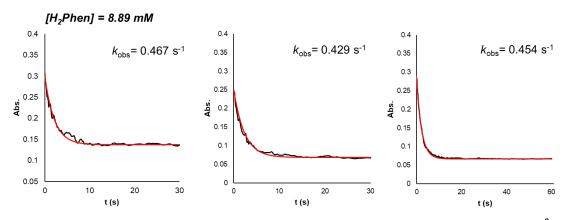
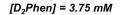


Figure S17. Plot of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and excess H₂Phen (6.35 mM) under pseudo-first order conditions recorded in CH₃CN at 258 K, with raw data (black) and a fit curve (red). Concentration of H₂Phen for each reaction is noted, alongside the fit-derived k_{obs}. Triplicate data sets are reported.


 $[H_2Phen] = 7.50 \ mM$

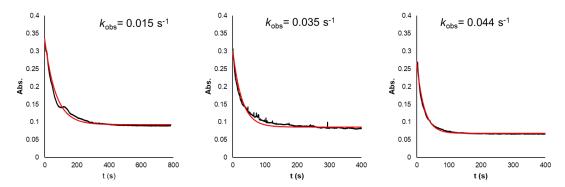


Figure S18. Plot of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and excess H₂Phen (7.50 mM) under pseudo-first order conditions recorded in CH₃CN at 258 K, with raw data (black) and a fit curve (red). Concentration of H₂Phen for each reaction is noted, alongside the fit-derived k_{obs}. Triplicate data sets reported.

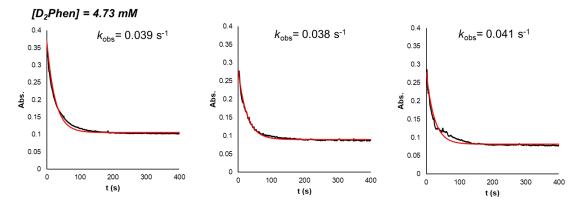
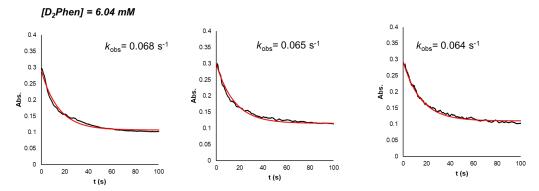
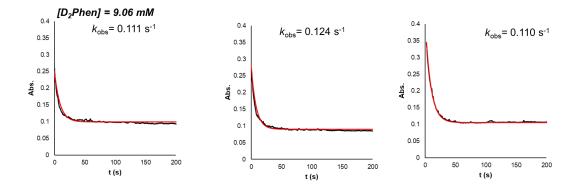
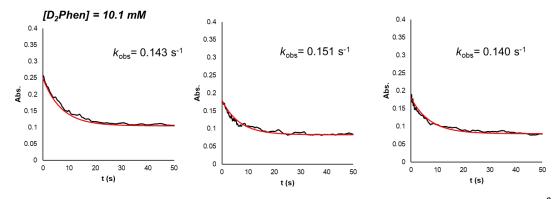
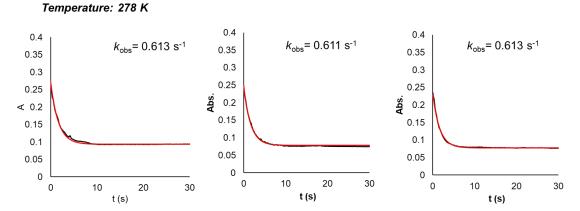


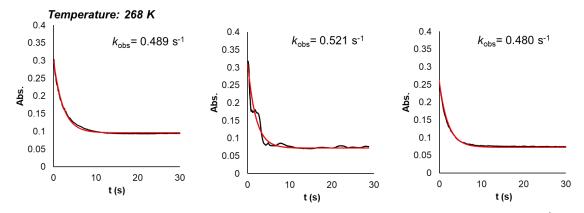
Figure S19. Plot of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and excess H₂Phen (8.89 mM) under pseudo-first order conditions recorded in CH₃CN at 258 K, with raw data (black) and a fit curve (red). The fit-derived k_{obs} is noted. Triplicate data sets are reported.




Figure S20. Plots of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and excess D₂Phen (3.75 mM) under pseudo-first order conditions recorded in CH₃CN at 258 K, with raw data (black) and a fit curve (red). The fit-derived k_{obs} is noted. Triplicate data sets are reported.


Figure S21. Plots of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and excess D₂Phen (4.73 mM) under pseudo-first order conditions recorded in CH₃CN at 258 K, with raw data (black) and a fit curve (red). The fit-derived k_{obs}. Triplicate data sets are reported.


Figure S22. Plots of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and excess D₂Phen (6.04 mM) under pseudo-first order conditions recorded in CH₃CN at 258 K, with raw data (black) and a fit curve (red). Concentration of D₂Phen for each reaction is noted, alongside the fit-derived k_{obs}.


Figure S23. Plots of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and excess D₂Phen (9.06 mM) under pseudo-first order conditions recorded in CH₃CN at 15 °C, with raw data (black) and a fit curve (red). The fit-derived k_{obs} is noted. Triplicate data sets are reported.

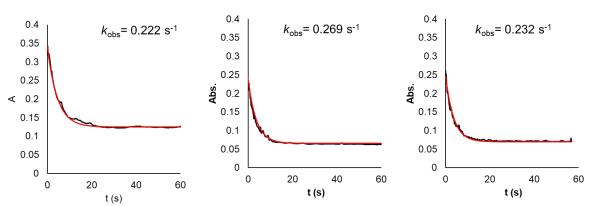

Figure S24. Plots of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and excess D₂Phen (10.1 mM) under pseudo-first order conditions recorded in CH₃CN at 258 K, with raw data (red) and a fit curve (black). The fit-derived k_{obs} is noted. Triplicate data sets reported.

Figure S25. Plots of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and H₂Phen (7.26 mM) recorded in CH₃CN at 278 K, with raw data (black) and a fit curve (red), providing k_{obs}. Triplicate data sets are reported.

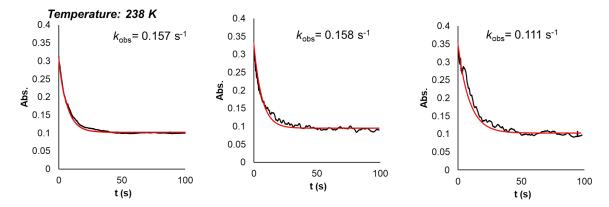
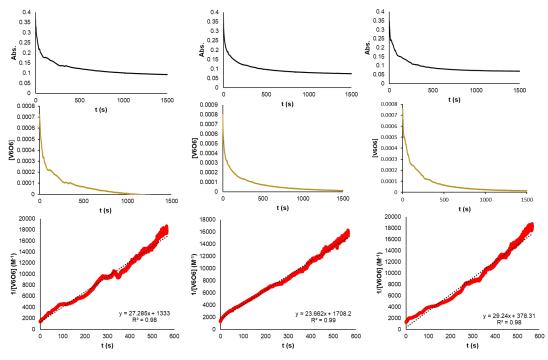


Figure S26. Plots of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and H₂Phen (7.26 mM) recorded in CH₃CN at 268 K, with raw data (black) and a fit curve (red), providing k_{obs}. Triplicate data sets are reported.



Temperature: 248 K

Figure S27. Plots of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and H₂Phen (7.26 mM) recorded in CH₃CN at 248 K, with raw data (black) and a fit curve (red), providing k_{obs}. Triplicate data sets are reported.

Figure S28. Plots of absorbance at 900 nm over time for reactions between $[V_6O_6(MeCN)]^0$ (0.75 mM) and H₂Phen (7.26 mM) recorded in CH₃CN at 238 K, with raw data (black) and a fit curve (red), providing k_{obs} and k_{exp}.

Figure S29. **V**₆**O**₆(**MeCN**) (0.75 mM) + 1 eq H₂Phen (0.75 mM) in MeCN, over 30 minutes at 258 K. Exponential decay of **V**₆**O**₆(**MeCN**) is monitored at 900 nm to least 3 half-lives, (top, black trace). Concentration of **V**₆**O**₆(**MeCN**) converted from absorbance using the following equations: $[V_6O_6]_{i}=[V_6O_6]_0-[V_6O_5]_t$ and $[V_6O_5]_t=(A_0-A_t)/(\varepsilon_{V_6O_6}-\varepsilon_{V_6O_5})^2$ where @ 900 nm $\varepsilon_{V_6O_6} = 415$ M⁻¹ cm⁻¹, $\varepsilon_{V_6O_5} = 98$ M⁻¹ cm⁻¹, (middle, yellow trace). Plot of $1/[V_6O_6(MeCN)]$ vs t (bottom, red trace. Black dotted line indicates linear fit). Diving the slope by the # of V=O and H-atoms transferred gets a second order $k_{PCET}= 3.5 \pm 0.1$ M⁻¹ s⁻¹. Data sets reported in triplicate.

References

- 1. B. E. Petel, A. A. Fertig, M. L. Maiola, W. W. Brennessel and E. M. Matson, *Inorganic Chemistry*, 2019, **58**, 10462-10471.
- X. Lu, X. Li, Y. Lee, Y. Jang, M. S. Seo, S. Hong, K. Cho, S. Fukuzumi and W. Nam, Journal of the American Chemical Society 2020 142, 3891-3904.