Dramatically improved optical anisotropy by realizing stereochemcally active lone pairs in a sulfate system, K_2SO_4 ·HIO₃

Zhiyong Bai and Kang Min Ok*

Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea

Email: kmok@sogang.ac.kr

Empirical formula	HIK ₂ O ₇ S
Formula weight	350.17
Temperature/K	300.00
Crystal system	monoclinic
Space group	$P2_{1}/n$
a/Å	7.4215(8)
b/Å	7.1578(8)
c/Å	13.8021(15)
$eta/^\circ$	93.330(4)
Volume/Å ³ , Z	731.95(14), 4
$ ho_{calc} g/cm^3$	3.178
μ/mm^{-1}	5.787
<i>F</i> (000)	656.0
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.914 to 56.704
Index ranges	$-9 \le h \le 9, -9 \le k \le 9, -18 \le 1 \le 18$
Reflections collected	26266
Independent reflections	1833 [$R_{\text{int}} = 0.0663, R_{\text{sigma}} = 0.0190$]
Data/restraints/parameters	1833/2/109
Goodness-of-fit on F^2	1.153
Final R indexes $[I \ge 2\sigma(I)]^{a}$	$R_1 = 0.0168, wR_2 = 0.0411$
Final R indexes [all data] ^a	$R_1 = 0.0182, wR_2 = 0.0416$
Largest diff. peak/hole / e Å ⁻³	0.85/-0.58
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} $ and $wR_{2} = [\sum (F_{o})]$	$[2^{2}-F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})$.

Table S1. Crystal data and structure refinement.

Atom	x	у	z	U(eq)
I1	8075.4(2)	3605.4(2)	4522.5(2)	11.76(6)
K1	6688.0(7)	8843.9(7)	5807.7(4)	20.53(11)
K2	989.2(7)	1579.7(7)	6787.8(4)	21.70(11)
S 1	5760.4(7)	3504.8(6)	6577.7(4)	12.60(11)
01	10336.1(18)	2979(2)	4923.7(11)	17.8(3)
02	5785(2)	3260(2)	7641.6(11)	22.2(3)
03	7531(2)	2861(2)	6239.3(11)	22.2(3)
04	5486(2)	5480(2)	6334.2(12)	23.8(3)
05	4328(2)	2373(2)	6103.5(12)	25.6(4)
06	8656(2)	4379(2)	3250.9(10)	18.3(3)
07	7177(2)	1362(2)	4203.3(12)	20.9(3)

Table S2. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$). U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
I1	10.40(8)	12.56(9)	12.30(9)	-0.31(4)	0.49(5)	-0.12(4)
K1	18.8(2)	19.3(2)	23.2(2)	1.45(18)	-0.73(18)	-1.86(17)
K2	17.6(2)	25.3(2)	22.1(2)	7.73(18)	0.06(18)	-1.19(17)
S 1	11.7(2)	14.2(2)	12.0(2)	0.39(16)	2.16(18)	-0.76(16)
01	10.9(7)	23.4(8)	19.1(7)	1.4(6)	0.4(5)	3.8(6)
02	25.4(8)	28.8(8)	12.5(7)	0.4(6)	3.3(6)	-2.2(7)
03	15.5(7)	31.2(9)	20.6(8)	4.3(7)	6.7(6)	6.1(6)
04	25.6(8)	16.3(7)	29.7(9)	6.5(6)	3.5(7)	2.4(6)
05	22.4(8)	31.5(9)	22.7(8)	-6.2(7)	0.2(6)	-12.0(7)
06	20.6(7)	22.5(8)	11.9(7)	1.8(6)	3.0(6)	3.8(6)
07	21.1(8)	14.3(7)	27.5(9)	-3.2(6)	2.0(6)	-4.4(6)

Table S3. Anisotropic Displacement Parameters (Å $^2 \times 10^3$). The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + 2hka^* b^* U_{12} + ...]$.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
I1	01	1.7929(14)	K1	O5 ⁷	3.1141(19)
I1	O6	1.9132(15)	K1	O7 ⁷	2.8943(17)
I1	07	1.7841(14)	K1	O7 ¹	2.8715(17)
S 1	02	1.4779(16)	K2	O1 ¹¹	2.7772(16)
S 1	03	1.4928(15)	K2	O2 ¹⁰	2.8498(18)
S 1	O4	1.4647(16)	K2	O3 ¹¹	2.7883(16)
S 1	05	1.4608(15)	K2	O4 ¹⁰	2.9775(18)
K1	O1 ⁸	2.8034(15)	K2	05	2.7614(17)
K1	O2 ⁹	2.7942(16)	K2	O61	2.9057(18)
K1	O3 ⁷	2.9955(18)	K2	O6 ¹²	2.8288(16)
K1	O4	2.6825(16)	K2	O7 ¹³	2.8936(17)
K1	O5 ¹	2.8379(16)			

Table S4. Interatomic distances.

¹1-X, 1-Y, 1-Z; ²+X, -1+Y, +Z; ³1/2+X, 1/2-Y, -1/2+Z; ⁴1+X, +Y, +Z; ⁵1-X, 2-Y, 1-Z; ⁶1+X, 1+Y, +Z; ⁷+X, 1+Y, +Z; ⁸2-X, 1-Y, 1-Z; ⁹3/2-X, 1/2+Y, 3/2-Z; ¹⁰1/2-X, -1/2+Y, 3/2-Z; ¹¹-1+X, +Y, +Z; ¹²-1/2+X, 1/2-Y, 1/2+Z; ¹³1-X, -Y, 1-Z.

Table S5. Bond angles.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O7	I1	01	100.41(7)	O1 ¹⁰	K2	O2 ¹²	23.24(3)
O7	I1	06	97.74(7)	O1 ¹⁰	K2	O3 ¹⁰	76.44(3)
O1 ⁸	K1	O3 ⁷	63.442(15)	O1 ¹⁰	K2	O4 ¹²	141.44(4)
O1 ⁸	K1	O5 ¹	120.04(2)	O1 ¹⁰	K2	O 6 ¹	119.88(5)
O1 ⁸	K1	O5 ⁷	165.400(17)	O1 ¹⁰	K2	O6 ¹³	61.41(4)
O1 ⁸	K1	O7 ¹	105.171(16)	O1 ¹⁰	K2	O7 ¹⁴	148.06(5)
O1 ⁸	K1	O7 ⁷	67.793(17)	O2 ¹²	K2	O4 ¹²	106.43(4)
O2 ⁹	K1	O1 ⁸	66.339(15)	O2 ¹²	K2	O 6 ¹	45.45(3)
O29	K1	O3 ⁷	118.07(4)	O2 ¹²	K2	O7 ¹⁴	24.77(3)
O2 ⁹	K1	O5 ⁷	121.20(4)	O3 ¹⁰	K2	O2 ¹²	38.33(3)
O29	K1	O51	73.37(3)	O3 ¹⁰	K2	O4 ¹²	49.62(4)
O2 ⁹	K1	O71	135.21(4)	O3 ¹⁰	K2	O 6 ¹	90.69(4)
O2 ⁹	K1	O7 ⁷	111.01(5)	O3 ¹⁰	K2	O6 ¹³	85.22(5)
O3 ⁷	K1	O5 ⁷	72.23(5)	O3 ¹⁰	K2	O7 ¹⁴	86.80(5)
04	K1	O1 ⁸	152.33(5)	05	K2	O1 ¹⁰	58.79(4)
04	K1	O2 ⁹	141.43(5)	05	K2	O2 ¹²	135.55(4)
04	K1	O3 ⁷	82.99(5)	05	K2	O3 ¹⁰	137.08(4)
04	K1	O5 ⁷	125.35(4)	05	K2	O4 ¹²	73.79(5)
04	K1	O5 ¹	160.32(4)	05	K2	O 6 ¹	134.75(5)
04	K1	O7 ⁷	46.62(4)	05	K2	O6 ¹³	132.03(5)
04	K1	O7 ¹	92.53(4)	05	K2	O7 ¹⁴	137.27(5)
O5 ¹	K1	O3 ⁷	72.44(5)	O6 ¹³	K2	O2 ¹²	124.34(3)
O5 ¹	K1	O5 ⁷	82.42(5)	O 6 ¹	K2	O4 ¹²	69.74(3)
O5 ¹	K1	O 7 ¹	112.25(5)	O6 ¹³	K2	O4 ¹²	133.11(3)
O51	K1	O7 ⁷	142.78(5)	O6 ¹³	K2	O 6 ¹	85.17(5)
O 7 ¹	K1	$I1^1$	124.80(5)	O6 ¹³	K2	O7 ¹⁴	108.50(4)

Atom	Atom	Atom	Angle/°	Atom .	Atom	Atom	Angle/°
O71	K1	O3 ⁷	110.17(4)	O7 ¹⁴	K2	O4 ¹²	108.47(4)
O7 ⁷	K1	O3 ⁷	129.21(4)	O7 ¹⁴	K2	O6 ¹	82.48(3)
O7 ⁷	K1	O5 ⁷	133.09(4)	O2	S 1	O3	150.76(2)
O71	K1	O5 ⁷	87.78(5)	O4	S 1	O2	140.45(7)
O71	K1	O7 ⁷	82.95(5)	O4	S 1	O3	149.08(7)
05	S 1	03	59.84(7)	05	S 1	O2	109.83(10)
05	S1	O4	110.74(7)				

¹1-X, 1-Y, 1-Z; ²+X, -1+Y, +Z; ³1/2+X, 1/2-Y, -1/2+Z; ⁴1+X, +Y, +Z; ⁵1-X, 2-Y, 1-Z; ⁶1+X, 1+Y, +Z; ⁷+X, 1+Y, +Z; ⁸2-X, 1-Y, 1-Z; ⁹3/2-X, 1/2+Y, 3/2-Z; ¹⁰-1+X, +Y, +Z; ¹¹-1+X, -1+Y, +Z; ¹²1/2-X, -1/2+Y, 3/2-Z; ¹³-1/2+X, 1/2-Y, 1/2+Z; ¹⁴1-X, -Y, 1-Z; ¹⁵1/2-X, 1/2+Y, 3/2-Z; ¹⁶3/2-X, -1/2+Y, 3/2-Z.

Table S6. Hydrogen Bonds.

D H A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O3 H3 O7	1.00(2)	2.19(8)	3.005(2)	138(9)
O6 H6 O2 ¹	0.958(18)	1.680(18)	2.631(2)	172(3)

¹1/2+X, 1/2-Y, -1/2+Z¹1-X, 1-Y, 1-Z; ²2-X, 1-Y, 1-Z; ³+X, -1+Y, +Z; ⁴1+X, +Y, +Z; ⁵1-X, -Y, 1-Z; ⁶3/2-X, -1/2+Y, 3/2-Z; ⁷1/2-X, 1/2+Y, 3/2-Z; ⁸1/2+X, 1/2-Y, -1/2+Z.

Table S7. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$).

Atom	x	y	Z	U(eq)
H3	7020(130)	1950(130)	5750(70)	30(30)
H6	9440(40)	3480(40)	2970(20)	13(8)

Table S8. Atomic Occupancy.

Atom	Occupancy	Atom	Occupancy	
Н3	0.25	Н6	0.75	

Atom	BVS	Atom	BVS	
I1	+4.843	O3	-1.958	
S1	+5.995	O4	-1.867	
K1	+1.135	05	-1.954	
K2	+1.175	O 6	-1.548	
01	-2.102	07	-2.196	
02	-1.795			

Table S9. The bond valence sum (BVS) calculated by PLATON.

(hkl)	observed 20 /°	calculated 20/°
(00-2)	12.840	12.839
(00-4)	25.840	25.843
(00-8)	53.140	53.133

Table S10. The (hkl) index of (001)-oriented single crystal slices for refractive indices measurement.

Table S11. The measured refractive index of K_2SO_4 ·HIO₃ on gem refractometer at

589.3	nm

Rotation angle/°	0	45	90	135	180	225	270	315
<i>n</i> ₁	1.535 (min)	1.55	1.60	1.60	1.60	1.62	1.61	1.565
n ₂	1.61	1.61	1.64	1.65	1.66	1.675 (max)	1.65	1.62

Fig. S1 Asymmetric unit of K_2SO_4 ·HIO₃.

Fig. S2 The TGA diagram of K_2SO_4 ·HIO₃.

Fig. S3 PXRD patterns of K_2SO_4 ·HIO₃ measure before and after heating at 700 °C.

Fig. S4 The FT-IR spectrum of K_2SO_4 ·HIO₃.

The asymmetric stretching vibration of $[SO_4]$ was found at 972 cm⁻¹ while the symmetric stretching vibrations for $[SO_4]$ occurred at 1053, 1153, and 1190 cm⁻¹. In addition, peaks occurring at 802 and 821 cm⁻¹ could be assigned to the asymmetric and symmetric stretching vibrations of $[IO_3]$, respectively.

Fig. S5 The calculated band structure of K_2SO_4 ·HIO₃.

Fig. S6 The calculated refractive index curves of K_2SO_4 ·HIO₃ based on DFT theory.