Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Colloid synthesis of hexagonal CuFe(S_xSe_{1-x})₂ nanoplates with exposed highly-

active (220) facets for boosting overall water splitting

Shoushuang Huang, ^a Xiansheng Cong, ^a Tong Ye, ^a Libin Liu, ^a Kaimei Peng, ^{*b} Lingchao Zhang, ^a Jinmei Bao, ^a Pengyan Gao, ^a Qiaochuan Chen *^c, and Qingquan He *^d ^aSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China ^bSchool of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities,

Duyun 558000, China

°School of Computer Engineering and Science, Shanghai Universiity, Shanghai, China

^dCollege of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China

*Corresponding authors:

K. Peng (pkmchem@sgmtu.edu.cn); Q. Chen, (qcchen@shu.edu.cn); Q. He (qqhe21@zjut.edu.cn);

Fig. S1. Black colored colloidal dispersion of $CuFe(S_xSe_{1-x})_2$ NPs undergoes the phase transfer from chloroform to formamide (FA) upon exchange of the original organic surface ligands with S^{2–}.

Fig. S2. TEM images of (a) CuFeSe₂, (b) CuFe(S_{0.45}Se_{0.55})₂, (c) CuFe(S_{0.63}Se_{0.37})₂, and (d) CuFeS₂.

Fig. S3. HRTEM images (a) and EDS mapping images (b) of the $CuFeS_2$ samples.

Fig. S4. The typical HRTEM image of a nanoplate derived from the as-synthesized $CuFe(S_{0.8}Se_{0.2})_2$ catalyst.

Fig. S5. EPR spectrum of the as-synthesized $CuFe(S_{0.8}Se_{0.2})_2$ samples.

Fig. S6. TEM images of $CuFe(S_{0.8}Se_{0.2})_2$ at different temperatures (a-b) 90 °C, (c-d) 135 °C, and (e-f) 180°C.

Fig. S7. TEM image of $CuFe(S_{0.8}Se_{0.2})_2$ synthesized by 1-DDT instead of t-DDT.

Fig. S8. HER performance in 1 M KOH solution. (a) LSV curves, (b) the Tafel plots, (c) the fitted C_{dl} and (d) Nyquist plots of the $CuFe(S_{0.8}Se_{0.2})_2$ samples before/after ligand exchange reaction.

Fig. S9. OER performance in 1 M KOH solution. (a) LSV curves, (b) the Tafel plots, (c) the fitted C_{dl} and (d) Nyquist plots of the $CuFe(S_{0.8}Se_{0.2})_2$ samples before/after ligand exchange reaction.

Fig. S10. CV curves of (a) CuFeSe₂, (b) CuFe($S_{0.45}Se_{0.55}$)₂, (c) CuFe($S_{0.63}Se_{0.37}$)₂, (d) CuFe($S_{0.8}Se_{0.2}$)₂ and (e) CuFeS₂ at different scan rates from 10 to 100 mV/s towards HER in 1.0 M KOH.

Fig. S11. The long stability tests of the $CuFe(S_{0.8}Se_{0.2})_2$ catalysts in 1 M KOH.

Fig. S12. CV curves of (a) CuFeSe₂, (b) CuFe($S_{0.45}Se_{0.55}$)₂, (c) CuFe($S_{0.63}Se_{0.37}$)₂, (d) CuFe($S_{0.8}Se_{0.2}$)₂ and (e) CuFeS₂ at different scan rates from 10 to 100 mV/s towards OER in 1.0 M KOH.

Fig. S13. XPS spectra for (a) survey, (b) Cu 2p, (c) Fe 2p, (d) S 2p, and (e) Se 3d of $CuFe(S_{0.8}Se_{0.2})_2$ before and after OER stability test.

Fig. S14. Raman spectra of the $CuFe(S_{0.8}Se_{0.2})_2$ catalysts after OER test.

Fig. S15. The TEM images of the $CuFe(S_{0.8}Se_{0.2})_2$ catalysts after OER test.

EDX	results	for	CuFe(S	se_{1-x})2	catalysts.
-----	---------	-----	--------	------------	----	------------

Catalysts	Cu:Fe:S:Se actom ratio from EDS
CuFeSe ₂	31.99 : 19.37 : 48.64
$CuFe(S_{0.45}Se_{0.55})_2$	25.24 : 22.16 : 23.78 : 28.82
$CuFe(S_{0.63}Se_{0.37})_2$	27.06 : 20.55 : 33.15 : 19.24
$CuFe(S_{0.8}Se_{0.2})_2$	34.62 : 17.69 : 38.28 : 9.41
CuFeS ₂	27.93 : 20.63 : 51.44

Table S2

ICP results for $CuFe(S_{0.8}Se_{0.2})_2$ catalysts.

Catalysts	Cu:Fe:S:Se ratio from ICP
$CuFe(S_{0.8}Se_{0.2})_2$	28.27 : 28.34 : 34.9 : 8.49

electrolyte	Catalysts	$R_s(\Omega)$	$R_{ct}(\Omega)$
	CuFeSe ₂	1.89	304.4
	$CuFe(S_{0.45}Se_{0.55})_2$	1.161	104
I M KOH	$CuFe(S_{0.63}Se_{0.37})_2$	2.345	27.41
(IIEK)	$CuFe(S_{0.8}Se_{0.2})_2$	3.667	10.59
	CuFeS ₂	2.167	213.4
	CuFeSe ₂	2.916	192.8
	$CuFe(S_{0.45}Se_{0.55})_2$	1.585	78.41
	$CuFe(S_{0.63}Se_{0.37})_2$	2.295	28.53
(OEK)	$CuFe(S_{0.8}Se_{0.2})_2$	1.843	15.57
	CuFeS ₂	1.709	145.3

Equivalent circuit fitting parameters for the $CuFe(S_xSe_{1-x})_2$ catalysts.

The OER activity of the $CuFe(S_{0.8}Se_{0.2})_2$ catalyst in this work. Comparison with recently reported transition metal-based chalcogenides electrocatalysts.

			Overpotential	
Catalyst	Electrode	Electrolyte	(mV) at 10	References
			mA/cm ²	
MoSe ₂ -Cu ₂ S	GCE	1 M KOH	264	1
MoS_2/NiS_2-3	CC	1 M KOH	278	2
CuSe	NF	1 M KOH	297	3
CuFe/NF	NF	1 M KOH	218	4
Cu@CoFe LDH	CF	1 M KOH	240	5
NiS_2/MoS_2-2	CC	1 M KOH	270	6
CuFeS ₂	NF	1 M KOH	320	7
Co-Fe(1/1)-Se	GCE	1 M KOH	270	8
$CoFe_{0.7}Se_{1.7}$	СР	1 M KOH	279	9
Fe ₇ S ₈ /FeS ₂ /C	NF	1 M KOH	262	10
$CuFe(S_{0.8}Se_{0.2})_2$	NF	1 M KOH	271	This work

NF: Ni foam; GCE: glassy carbon electrode; CF: Cu foam;

The OWS activity of the $CuFe(S_{0.8}Se_{0.2})_2$ catalyst in this work. Comparison with recently reported transition metal-based chalcogenides electrocatalysts.

Catalyst	Electrode	Electrolyte	(mV) at 10	References
			mA/cm ²	
MoS_2/NiS_2-3	CC	1 M KOH	1.59	2
CuSe	NF	1 M KOH	1,68	3
CuFe/NF	NF	1 M KOH	1.64	4
Cu@CoFe LDH	Cu foam	1 M KOH	1.68	5
CuFeS ₂	NF	1 M KOH	1.66	7
Co-Fe(1/1)-Se	GCE	1 M KOH	1.68	8
Fe ₇ S ₈ /FeS ₂ /C	NF	1 M KOH	1.67	10
Co_9S_8 -Ni ₃ S ₂ -	NF	1 M KOH	1.65	11
CNTs/NF				
EG/Co _{0.85} Se/NiFeLDH	EG	1 M KOH	1.67	12
Fe-doped NiS–NiS ₂	NF	1 M KOH	1.59	13
$CuFe(S_{0.8}Se_{0.2})_2$	NF	1 M KOH	1.61	This work

NF: Ni foam; GCE: glassy carbon electrode; CF: Cu foam;

References

- M. S. Hassan, P. Basera, S. Gahlawat, P. P. Ingole, S. Bhattacharya and S. Sapra, Understanding the efficient electrocatalytic activities of MoSe₂–Cu₂S nanoheterostructures, *J. Mater. Chem. A*, 2021, **9**, 9837-9848.
- J. H. Lin, P. C. Wang, H. H. Wang, C. Li, X. Q. Si, J. L. Qi, J. Cao, Z. X. Zhong, W. D. Fei and J. C. Feng, Defect-Rich Heterogeneous MoS₂/NiS₂ Nanosheets Electrocatalysts for Efficient Overall Water Splitting, *Adv. Sci.*, 2019, 6, 1900246.
- B. Chakraborty, R. Beltran-Suito, V. Hlukhyy, J. Schmidt, P. W. Menezes and M. Driess, Crystalline Copper Selenide as a Reliable Non-Noble Electro(pre)catalyst for Overall Water Splitting, *Chemsuschem*, 2020, 13, 3222-3229.
- A. I. Inamdar, H. S. Chavan, B. Hou, C. H. Lee, S. U. Lee, S. Cha, H. Kim and H. Im, A Robust Nonprecious CuFe Composite as a Highly Efficient Bifunctional Catalyst for Overall Electrochemical Water Splitting, *Small*, 2020, 16, e1905884.
- L. Yu, H. Q. Zhou, J. Y. Sun, F. Qin, D. Luo, L. X. Xie, F. Yu, J. M. Bao, Y. Li, Y. Yu, S. Chen and Z. F. Ren, Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting, *Nano Energy*, 2017, 41, 327-336.
- Y. Qian, J. Yu, Y. Zhang, F. Zhang, Y. Kang, C. Su, H. Shi, D. J. Kang and H. Pang, Interfacial Microenvironment Modulation Enhancing Catalytic Kinetics of Binary Metal Sulfides Heterostructures for Advanced Water Splitting Electrocatalysts, *Small Methods*, 2022, 6, 2101186.
- A. Sathyaseelan, D. Kesavan, S. Manoharan, V. K. Mariappan, K. Krishnamoorthy and S. J. Kim, Thermoelectric Driven Self-Powered Water Electrolyzer Using Nanostructured CuFeS₂ Plates as Bifunctional Electrocatalyst, *ACS Appl. Energy Mater.*, 2021, 4, 7020-7029.
- F. O. Boakye, Y. Li, K. A. Owusu, I. S. Amiinu, Y. P. Cheng and H. N. Zhang, One-step synthesis of heterostructured cobalt-iron selenide as bifunctional catalyst for overall water splitting, *Mater. Chem. Phys.*, 2022, 275, 125201.
- X. Y. Wang, Y. Zhou, M. Liu, C. Chen and J. Zhang, Colloidal synthesis of high-performance FeSe/CoSe nanocomposites for electrochemical oxygen evolution reaction, *Electrochim. Acta.*, 2019, 297, 197-205.

- Y. Xu, T. T. Feng, Z. J. Cui, P. F. Guo, W. P. Wang and Z. C. Li, Fe₇S₈/FeS₂/C as an efficient catalyst for electrocatalytic water splitting, *Int. J. Hydrogen Energy*, 2021, 46, 39216-39225.
- Y. Yao, J. He, L. Ma, J. Wang, L. Peng, X. Zhu, K. Li and M. Qu, Self-supported Co₉S₈-Ni₃S₂-CNTs/NF electrode with superwetting multistage micro-nano structure for efficient bifunctional overall water splitting, *J. Colloid. Interf. Sci.*, 2022, **616**, 287-297.
- Y. Hou, M. R. Lohe, J. Zhang, S. H. Liu, X. D. Zhuang and X. L. Feng, Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting, *Energy Environ. Sci.*, 2016, 9, 478-483.
- S. S. Huang, Q. Zhang, P. J. Xin, J. Zhang, Q. C. Chen, J. Fu, Z. Q. Jin, Q. Wang and Z. J. Hu, Construction of Fe-doped NiS-NiS₂ Heterostructured Microspheres Via Etching Prussian Blue Analogues for Efficient Water-Urea Splitting, *Small*, 2022, e2106841.