Supporting Information

Novel COF@Ti-MOF hybrid photocatalysts enabling enhanced photocatalytic CO₂ reduction in a gas-solid system without additives

Rui-Gang Yang,^a Yao-Mei Fu,^b Xing Meng,^a Li Xue,^a Zhen Zhou,^a Yu-Ou He,^a Jian-Xin Qu,^a Hai-Ning Wang,^{*a} and Zhong-Min Su,^{b,c}

^aSchool of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China. E-mail: wanghn913@foxmail.com, mengxing837@foxmail.com.

^bShandong Engineering Research Center of Green and High-value Marine Fine Chemical; Weifang University of Science and Technology, Shouguang, 262700, China.

^cSchool of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.

1. Reagents and solvents

square acid, titanium (IV) isopropoxide, 1,3,5-triformylphloroglucinol (Tp), 1,4-pphenylenediamine (Pa), isopropyl alcohol, mesitylene, 1,4-dioxane, acetic acid, ethanol, 5% Nafion solution, sodium sulfate, tetrahydrofuran, acetone. All the above reagents are purchased from Macleans Biochemical Co., Ltd (Shanghai).

2. Material characterization

The FTIR-850 is applied to record the Fourier transform infrared spectra (FT-IR) of the samples. The apparent morphology of the samples is analyzed via scanning electron microscopy (SEM, Sirion 200) at an accelerating voltage of 20 kV. The X-ray photoelectron spectroscopy (XPS) measurements are conducted on a scanning X-ray microprobe (K-Alpha, Thermo Scientific), which used Al α radiation and the C 1s peak at 284.8 eV as an internal standard. The ultraviolet-visible (UV-Vis) spectra of the samples are tested using a UV-2550 spectrophotometer from Shimadzu, Japan. The CO₂ adsorption/desorption experiment (BSD-PM2) is carried out at 298 K.

3. Photocurrent measurements

The electrochemical analysis was carried out by the electrochemical analyzer (CHI 760E), using a standard three-electrode system for photocurrent response test and Mott-Schottky test. The electrolyte solution is 0.2 mol·L⁻¹ sodium sulfate solution, Ag/AgCl electrode is used as reference electrode, platinum electrode is used as counter electrode, and ITO glass coated with photocatalyst is used as working electrode. The working electrode was prepared by adding photocatalyst (1 mg) and 5% Nafion (10 μ L) to 1 mL ethanol and ultrasonic treatment for 1 h, and then dripping the resulting suspension on 1 cm × 2 cm ITO glass.

4. Photocatalytic measurements

Disperse the synthesized sample (2 mg) in 1 mL ethanol for 30 minutes to make it uniformly distribution, and then drip it on a 1 cm \times 3 cm glass slide with a coverage

area of 1 cm \times 3 cm, which was heated at 100 ° C to remove the ethanol. The prepared

sample was placed in a self-made photocatalytic reactor, and about 100 μ L of deionized water was added to the bottom as a reducing agent. The CO₂ with different concentrations was used to replace the air inside the reactor and full of the reactor. The LED lamp was used as the light source and irradiated the sample for 2 h. 0.5 mL and 1.0 mL of the photocatalyzed mixed gas were injected into the gas chromatograph (GC 1120) to determine the CO content in the gas respectively.

5. Synthesis of TpPa-1

TpPa-1 was synthesized on the basis of the reported literature¹. Firstly, Tp (63 mg, 0.3 mmol) and Pa (48 mg, 0.45 mmol) were added into the glass tube. Secondly, 1.0 mL of mesitylene and 3.0 mL of 1,4-dioxane were introduced into the glass tube. Thirdly, the mixture was treated via the ultrasound method for 30 min. Fourthly, the resulting mixed system was rapidly frozen in liquid nitrogen bath (77K), degassed by three freeze-pump-thaw cycles, and sealed under vacuum after the addition of the acetic acid solution (6 M, 0.4 mL). Finally, the resulting system was heated at 120°C for 72 h, and then cooled to room temperature. The obtained product was separately extracted in tetrahydrofuran and acetone solutions for 24 h respectively, and then dried in vacuum

to obtain the red powder.

6. Synthesis of IEF-11

The synthesis of **IEF-11** was based on a slight modification of the already reported literature². 255 mg (2.24 mmol) of square acid was placed in the liner of a polytetrafluoroethylene reactor, to which 8.2 mL (0.7 mmol) of isopropanol solution was added and sonicated for 5 min to completely dissolve it, then 6.4 mL (111.9 mmol) of glacial acetic acid was added to it and sonicated for 15 min, and finally 762 μ L of tetraisopropyl titanate was added to the reaction system, heating at 120°C for 48 h. The orange product was washed with isopropanol, filtered and dried, and collected.

7. Synthesis of TpPa@IEF-X series photocatalyst

TpPa-1 and 26 mg of square acid with certain masses (50 mg, 100 mg and 150 mg, respectively) were added to the polytetrafluoroethylene reactor liner containing 8.2 ml of isopropanol solution and sonicated for 5 min until they dissolved. 640 μ L of glacial acetic acid was added and sonicated for 15 min. 80 μ L of titanium isopropoxide solution was then slowly added and heated at 120°C for 48 h to obtain the **TpPa@IEF-X** series catalyst.

Fig. S1 XRD spectra of TpPa@IEF-150 treated in different pH solutions.

Fig. S2 FT-IR spectra of TpPa@IEF-150 treated in different pH solutions.

Fig. S4 High-resolution XPS spectra of C1s in TpPa@IEF-150 at different pH solutions.

Fig. S5 High-resolution XPS spectra of N1s in TpPa@IEF-150 at different pH solutions.

Fig. S6 High-resolution XPS spectra of O1s in TpPa@IEF-150 at different pH

Fig. S7 High-resolution XPS spectra of Ti2p in TpPa@IEF-150 at different pH solutions.

Fig. S8 SEM images of TpPa@IEF-150 after treatment in pH=1 solution.

Fig. S9 SEM images of TpPa@IEF-150 after treatment in pH=7 solution.

Fig. S10 SEM images of TpPa@IEF-150 after treatment in pH=10 solution.

Fig. S11 The TG curves of TpPa@IEF-X.

Fig. S13 CO₂ adsorption curves of TpPa-1, IEF-11 and TpPa@IEF-X.

Fig. S16 Electrochemical impedance diagram of the photocatalysts.

Fig. S17 The time-dependent formation rates of CO by TpPa@IEF-100.

Fig. S18 O_2 evolution rates of the composite sample TpPa@IEF-X in 100% CO_2 environment.

Fig. S19 O_2 evolution rates of the composite sample TpPa@IEF-X in 10% CO_2 environment.

Fig. S20 The durability in pure CO₂ environment by TpPa@IEF-100.

Fig. S21 The durability in dilute CO₂ environment by TpPa@IEF-150.

Tab. S1 The selectivity of catalytic products of composite samples in different CO_2 concentration environments

Photocatalyst	CO Selectivity
IEF-TpPa-50	98% (100% CO ₂)
IEF-TpPa-100	96% (100% CO ₂)
IEF-TpPa-150	97% (100% CO ₂)
IEF-TpPa-50	91% (10% CO ₂ +90% N ₂)
IEF-TpPa-100	98% (10% CO ₂ +90% N ₂)
IEF-TpPa-150	96% (10% CO ₂ +90% N ₂)

	Tab. S	S2 S	Summary	of	photocatal	ytic	CO_2	reduction	work.
--	--------	------	---------	----	------------	------	--------	-----------	-------

Photocatalyst	Products (μmol·g ⁻¹ ·h ⁻¹)	Reaction agent	Ref		
CT-COF	CO (102.70)	H ₂ O	S3		
MTCN-H(ys)	CO (18.12)	H_2O	S4		
TTCOF-Zn	CO (2.06)	H_2O	S5		
SpS /S CTE	CO (123.60)	TEOA	56		
51152/5-0178	CH ₄ (43.40)	IEUA	50		
α -Fe ₂ O ₃ /g-C ₃ N ₄	CO (27.20)	H_2O	S7		
$C-TiO_{2-x}/g-C_3N_4$	CO (204.96)	H_2O	S8		
COF-318-TiO ₂	CO (69.67)	H_2O	S9		
Ιη ΜΟΕΩΤΡ ΤΑ	CO (25.00)	Ч.О	S10		
III-MOF@IF-IA	CH ₄ (11.67)	1120			
NAHN-Tp/[Ir-ppy]	CO (88.60)	H_2O	S11		
g-C ₃ N ₄ (NH)/COF	CO (11.25)	TEOA	S12		
TpPa/rGO	CO (~200)	TEOA	S13		
TiO ₂ /TpPa	CO (11.60)	TEOA	S14		
TCOF-MnMo ₆	CO (37.25)	H_2O	S15		
TTCOF/NUZ(UiO-66-	CO(6.56)	ЧО	\$16		
NH ₂)	CO(0.30)	П2О	510		

References

- J.-L. Sheng, H. Dong, X.-B. Meng, H.-L. Tang, Y.-H. Yao, D.-Q. Liu, L.-L. Bai, F.-M. Zhang, J.-Z. Wei and X.-J. Sun, Effect of Different Functional Groups on Photocatalytic Hydrogen Evolution in Covalent-Organic Frameworks, *ChemCatChem*, 2019, 11, 2313-2319.
- P. Salcedo-Abraira, A. A. Babaryk, E. Montero-Lanzuela, O. R. Contreras-Almengor, M. Cabrero-Antonino, E. S. Grape, T. Willhammar, S. Navalón, E. Elkäim, H. García and P. Horcajada, A Novel Porous Ti-Squarate as Efficient Photocatalyst in the Overall Water Splitting Reaction under Simulated Sunlight Irradiation, *Adv. Mater.*, 2021, 33, 2106627.
- K. Lei, D. Wang, L. Ye, M. Kou, Y. Deng, Z. Ma, L. Wang and Y. Kong, A Metal-Free Donor–Acceptor Covalent Organic Framework Photocatalyst for Visible-Light-Driven Reduction of CO₂ with H₂O, *ChemSusChem*, 2020, 13, 1725-1729.
- M. Zhang, J.-N. Chang, Y. Chen, M. Lu, T.-Y. Yu, C. Jiang, S.-L. Li, Y.-P. Cai and Y.-Q. Lan, Controllable Synthesis of COFs-Based Multicomponent Nanocomposites from Core-Shell to Yolk-Shell and Hollow-Sphere Structure for Artificial Photosynthesis, *Adv. Mater.*, 2021, 33, 2105002.
- M. Lu, J. Liu, Q. Li, M. Zhang, M. Liu, J.-L. Wang, D.-Q. Yuan and Y.-Q. Lan, Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO₂ Photoreduction with H₂O, *Angew. Chem., Int. Ed.*, 2019, **58**, 12392-12397.
- S. Guo, P. Yang, Y. Zhao, X. Yu, Y. Wu, H. Zhang, B. Yu, B. Han, M. W. George and Z. Liu, Direct Z-Scheme Heterojunction of SnS₂/Sulfur-Bridged Covalent Triazine Frameworks for Visible-Light-Driven CO₂ Photoreduction, *ChemSusChem*, 2020, 13, 6278-6283.
- Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao and P. K. Wong, A Hierarchical Z-Scheme α-Fe₂O₃/g-C₃N₄ Hybrid for Enhanced Photocatalytic CO₂ Reduction, *Adv. Mater.*, 2018, **30**, 1706108.
- 8. J. Zhou, H. Wu, C.-Y. Sun, C.-Y. Hu, X.-L. Wang, Z.-H. Kang and Z.-M. Su, Ultrasmall C-TiO_{2-x} nanoparticle/g-C₃N₄ composite for CO₂ photoreduction with high efficiency and selectivity, *J. Mater. Chem. A*, 2018, **6**, 21596-21604.
- M. Zhang, M. Lu, Z.-L. Lang, J. Liu, M. Liu, J.-N. Chang, L.-Y. Li, L.-J. Shang, M. Wang, S.-L. Li and Y.-Q. Lan, Semiconductor/Covalent-Organic-Framework Z-Scheme Heterojunctions for Artificial Photosynthesis, *Angew. Chem., Int. Ed.*, 2020, **59**, 6500-6506.
- L. Wang, J. Mao, G. Huang, Y. Zhang, J. Huang, H. She, C. Liu, H. Liu and Q. Wang, Configuration of hetero-framework via integrating MOF and triazine-containing COF for charge-transfer promotion in photocatalytic CO₂ reduction, *Chem. Eng. J.*, 2022, 446, 137011.
- S.-Q. You, J. Zhou, M.-M. Chen, C.-Y. Sun, X.-J. Qi, A. Yousaf, X.-L. Wang and Z.-M. Su, A hydrazone-based covalent organic framework/iridium (III) complex for photochemical CO₂ reduction with enhanced efficiency and durability, *Journal of Catalysis*, 2020, **392**, 49-55.

- J. Wang, Y. Yu, J. Cui, X. Li, Y. Zhang, C. Wang, X. Yu and J. Ye, Defective g-C₃N₄/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO₂ photoreduction, *Appl. Catal.*, *B*, 2022, **301**, 120814.
- V. N. Gopalakrishnan, D.-T. Nguyen, J. Becerra, M. Sakar, J. M. E. Ahad, J. J. Jautzy, L. M. Mindorff, F. Béland and T.-O. Do, Manifestation of an Enhanced Photoreduction of CO₂ to CO over the In Situ Synthesized rGO–Covalent Organic Framework under Visible Light Irradiation, ACS Applied Energy Materials, 2021, 4, 6005-6014.
- X. An, J. Bian, K. Zhu, R. Liu, H. Liu and J. Qu, Facet-dependent activity of TiO₂/covalent organic framework S-scheme heterostructures for CO₂ photoreduction, *Chem. Eng. J.*, 2022, 442, 135279.
- M. Lu, M. Zhang, J. Liu, T.-Y. Yu, J.-N. Chang, L.-J. Shang, S.-L. Li and Y.-Q. Lan, Confining and Highly Dispersing Single Polyoxometalate Clusters in Covalent Organic Frameworks by Covalent Linkages for CO₂ Photoreduction, *J. Am. Chem. Soc.*, 2022, 144, 1861-1871.
- Q. Niu, S. Dong, J. Tian, G. Huang, J. Bi and L. Wu, Rational Design of Novel COF/MOF S-Scheme Heterojunction Photocatalyst for Boosting CO₂ Reduction at Gas–Solid Interface, ACS Appl. Mater. Interfaces, 2022, 14, 24299-24308.