Efficient and Selective Photocatalytic CO₂ Reduction over Ga Single Atoms Decorated Quantum Dots under Visible Light

Li Shi ^a *, Yingkui Yan ^a, Ye Wang ^a, Tingting Bo ^b, Wei Zhou ^b *, Xiaohui Ren ^c, Yanshuo Li ^a*

^a School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.

^b Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072, P. R. China.

^c The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China.

Email: shili1@nbu.edu.cn; weizhou@tju.edu.cn; liyanshuo@nbu.edu.cn

Figure S1. High resolution XPS of CdSe QDs.

Figure S2. Calculated bandgaps of (a) CdSe QDs and (b) Ga-CdSe QDs.

Figure S3. Mott-Schottky plots of (a) CdSe QDs and (b) Ga-CdSe; (c) Band positions

of two QDs samples.

Figure S4. Size distribution of CdSe QDs.

Figure S5. Size distribution of Ga-CdSe QDs.

Figure S6. (a) EXAFS k space experimental results of Ga metal, Ga₂Se₃ and Ga-CdSe QDs; (b) fitting curve of Ga-CdSe QDs.

Table S1. Structural parameters calculated by the fit of the inverse Fourier transformed EXAFS oscillations. *N*, σ^2 , ΔE referred to the coordination number, Debye-Waller factor, and potential shift, respectively.

Sample	Shell	N	σ ² (×10 ⁻³) (Å ²)	ΔE (eV)	R-factor
Ga-CdSe	Ga-Se	3.3	4.6	-2.8	0.0038

Figure S7. High resolution XPS of Ga-CdSe QDs.

Figure S8. Time dependent yields of CO and H_2 products over (a) CdSe QDs and (b) Ga-CdSe QDs in photocatalytic CO₂ reduction.

Table S2. The comparison of photocatalytic CO_2 reduction performance over different

Photocatalysts	light source	photocatalytic activity	references
Ga-CdSe QDs	300 W Xe lamp, λ> 400 nm	CO evolution rate: 16.1 μ mol h ⁻¹ H ₂ evolution rate: 1.7 μ mol h ⁻¹	This work
ZnSe QDs/ NiCycP	AM 1.5G	CO evolution rate: ca. 0.25 μ mol h ⁻¹ H ₂ evolution rate: ca. 0.55 μ mol h ⁻¹	Chem. Sci. 2018, 9, 2501–2509
CdS QDs/ [Ni(terpyS) ₂] ²⁺	AM 1.5G	CO evolution rate: 0.415 μ mol h ⁻¹ H ₂ evolution rate: 0.312 μ mol h ⁻¹	J. Am. Chem. Soc. 2017, 139, 7217–7223
g-C ₃ N ₄ -CsPbBr ₃ QDs	300 W Xe lamp, $\lambda > 420 \text{ nm}$	CO evolution rate: 1.19 µmol h ⁻¹	Angew. Chem. Int. Ed. 2018, 57, 13570 –13574
CdSe QDs	Blue LED- photoreactor (λ_{max} = 450 nm)	CO evolution rate: 1.81 μ mol h ⁻¹ H ₂ evolution rate: 0.10 μ mol h ⁻¹	ChemSusChem. 2019, 12,4617 – 4622
CdS QDs/ Co ₂ L	$300 \text{ W Xe lamp}, \lambda > 420 \text{ nm}$	CO evolution rate: 0.288 μ mol h ⁻¹ H ₂ evolution rate: 0.007 μ mol h ⁻¹ CH ₄ evolution rate: 0.008 μ mol h ⁻¹	ACS Catal. 2018, 8, 12, 11815– 11821
CsPbBr ₃ QDs/ GO	100 W Xe lamp with an AM 1.5G filter	CO evolution rate: 0.02 μ mol h ⁻¹ H ₂ evolution rate: trace CH ₄ evolution rate: 0.01 μ mol h ⁻¹	J. Am. Chem. Soc. 2017, 139, 5660–5663

reported QDs photocatalysts.

Figure S9. Photocatalytic CO₂ reduction performances of Ga-CdSe QDs in different solvents.

Figure S10. XRD pattern of Ga-CdSe QDs before and after photocatalytic reaction.

Figure S11. XPS spectra of Ga-CdSe QDs before and after photocatalytic reaction.

Figure S12. GC-MS of 12 CO generated in the photocatalytic reduction of 12 CO₂ over Ga-CdSe QDs.

Table S3. Fitting data of the decay curves.

Samples	a ₁	t ₁	a ₂	t ₂	T _{average} (ns)
CdSe QDs	17074	0.7	868	8.1	3.4
Ga-CdSe QDs	489518	0.3	2060	3.2	0.4

Figure S13. CO₂ adsorption ability of CdSe QDs and Ga-CdSe QDs.

Figure S14. In-situ FTIR spectra of CdSe QDs in photocatalytic CO₂ reduction.

Configuration	Site	$E_{ m ads}$
CdSe	Cd	-0.29 eV
Ga-CdSe	Ga	-1.47 eV

Table S4. The adsorption energy of CO_2 on the surface of CdSe and Ga-CdSe systems.

Figure S15. Photocatalytic CO₂ reduction performances of CdSe QDs, Ga-CdSe QDs, and CdSe QDs with free Ga³⁺. The amount of Ga in CdSe QDs was determined by ICP method, which was measured to be 0.17 wt%. The added amount of free Ga³⁺ is the same with the amount of Ga in Ga-CdSe QDs.

Figure S16. Photocatalytic CO₂ reduction performances of Ga-CdSe QDs and Ga nanoparticles/CdSe QDs composite.

Ga nanoparticles are prepared according to the reported method (J. Am. Chem. Soc. 2022, 144, 6779–6790). Briefly, 0.1ml liquid commercial Ga (Adamas corporation) was added into 14ml ethanol and sonicated by sonication for 15 minutes. Then, Ga nanoparticles colloidal ethanol solution was obtained. Ga nanoparticles/CdSe QDs composite was prepared by mixing CdSe QDs with certain amount of Ga nanoparticles in ethanol solution under stirring, and then was obtained by centrifugation. The added amount of Ga nanoparticles is the same with the amount of Ga in Ga-CdSe QDs.