Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Cancer cell membrane camouflaged and H₂O₂-activatable nanocomposites for synergistic chemotherapy and two-photon photodynamic therapy against melanoma

Siyuan Gao,^a Fangmian Wei,^a Johannes Karges,^b Yukun Zhao,^{*c} Liangnian Ji,^a Hui Chao^{*a,d} ^a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China. E-mail: ceschh@mail.sysu.edu.cn

^b Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.

^c Department of Dermatology, The Eastern Division of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, P. R. China. E-mail: zhaoyukun7288569@sina.com

^d MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China.

Table of Contents

Scheme S1. Synthesis of Ir@SeNPs	3
Figure S1. ESI-MS spectrum and HRMS spectrum of Ir-OH	4
Figure S2. ESI-MS spectrum and HRMS spectrum of Ir-B(OH) ₂	5
Figure S3. ¹ H-NMR spectrum of Ir-OH	6
Figure S4. ¹ H-NMR spectrum of Ir-B(OH) ₂	7
Figure S5. The purity of Ir-OH detected by LC-MS	8
Figure S6. The purity of Ir-B(OH) ₂ detected by LC-MS	9
Figure S7. The elemental mapping of Ir@SeNPs	10
Figure S8. Size distribution of SeNPs, Ir@SeNPs, and Ir@SeNPs@CC	11
Figure S9. FTIR spectra of SeNPs, Ir-OH, Ir-B(OH) ₂ , and Ir@SeNPs	12
Figure S10. Change in absorption of DPBF at 410 nm upon 405 nm light irradiation	13
Figure S11. Change in absorption of DPBF at 410 nm upon 730 nm two-photon light irradiation	14
Figure S12. Hydrodynamic diameters of Ir@SeNPs and Ir@SeNPs@CC in common buffer	15
Figure S13. Changes in the absorption of Ir@SeNPs upon different treatments	16
Figure S14. Release kinetics of Ir@SeNPs in different aqueous solution	17
Figure S15. The ESI-MS of the supernatant of Ir@SeNPs solution after treated with H_2O_2	18
Figure S16. QM generation detected by ¹ H-NMR	19
Figure S17. Degradation of H ₂ O ₂ after being treated with Ir@SeNPs	20
Figure S18. Intracellular H_2O_2 levels of A375 cells upon different treatments	21
Figure S19. UV absorption of DTNB at 412 nm of time dependent GSH consumption	22
Figure S20. Intracellular GSH level of A375 cells upon different treatments	23
Figure S21. Cytotoxicity of A375 cells upon 20 mW light irradiation	24
Figure S23. Dark cytotoxicity of L02 cells	25
Figure S22. Cytotoxicity of A549 cells, HepG2 cells and MCF-7 cells	26
Figure S24. Dark cytotoxicity of RAW 264.7 cells	27
Figure S25. The DCF assay of A375 cells	28
Figure S26. The JC-1 assay of A375 cells	29
Figure S27. The Calcein AM/EthD-1 staining of monolayer A375 cells	30
Figure S28. Wound migration assays and western blot analysis	31
Figure S29. The Calcein AM/EthD-1 staining of A375 MCTS	32
Figure S30 The fluorescence imaging of organs of A375 tumor-bearing mice	33
Figure S31. Biodistribution in major organs	34
Figure S32. Representative H&E stained histopathologic slices of the major organs and tumors	35
Table S1. Cytotoxicity towards different cell lines	36
Table S2. Cytotoxicity towards A375 MCTS	37

Scheme S1. Synthesis of **Ir-OH, Ir-B(OH)**₂, and **Ir@SeNPs**. (a) 2-Ethoxyethano, H₂O, dark, Ar atmosphere, 125°C, 24 h; (b) CH_2CI_2 , CH_3OH , dark, Ar atmosphere, 65°C, 12 h; (c) K_2CO_3 , dry DMF, 63°C, 2h; (d) H₂O, room-temperature, overnight; (e) DMSO, H₂O, 37°C, 48 h.

Figure S1. ESI-MS spectrum (top) and HRMS (bottom) spectrum of **Ir-OH**. HRMS, $m/z = C_{47}H_{32}IrN_6O_2$, 905.2216 [M]⁺, found, 905.2169 [M]⁺.

Figure S2. ESI-MS spectrum (top, tetra-methyl boronic ester form) and HRMS (bottom) spectrum of Ir-B(OH)₂. HRMS, $m/z = C_{61}H_{46}B_2IrN_6O_6$, 1173.3294 [M]⁺, found, 1173.3292 [M]⁺.

Figure S3. ¹H-NMR spectrum of **Ir-OH**. ¹H-NMR (600 MHz, Methanol-*d*₄) δ 9.34 (d, *J* = 8.2 Hz, 1H), 8.45 (d, *J* = 5.1 Hz, 1H), 8.32 (d, *J* = 5.1 Hz, 1H), 8.02 (dd, *J* = 8.4, 5.1 Hz, 1H), 7.95 (m, 2H), 7.76 (p, *J* = 7.1, 6.7 Hz, 3H), 7.70 (m, 9H), 7.59 (dd, *J* = 8.7, 5.0 Hz, 1H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.44 – 7.35 (m, 4H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 1H), 6.78 (m, 2H), 6.56 (m, 2H), 5.91 (d, 2H).

9.35 9.33 9.34 9.35 9.4 9.4 10.4 11.5

Figure S4. ¹H-NMR spectrum of **Ir-B(OH)**₂. ¹H-NMR (600 MHz, Methanol- d_4) δ 9.34 (dd, J = 8.3, 1.5 Hz, 1H), 7.98 (d, J = 7.4 Hz, 1H), 7.96 (d, J = 8.3 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 8.8 Hz, 2H), 7.77 (t, J = 1.5 Hz, 1H), 7.77 – 7.72 (m, 6H), 7.71 (d, J = 7.1 Hz, 4H), 7.67 (m, 6H), 7.61 (d, J = 7.5 Hz, 1H), 7.55 (s, 2H), 7.50 – 7.46 (m, 2H), 7.42 (t, J = 7.6 Hz, 3H), 7.36 (s, 2H), 7.27 (d, J = 5.8 Hz, 1H), 7.22 (d, J = 5.9 Hz, 1H), 7.14 (m, 4H), 6.81 (t, J = 5.6 Hz, 2H), 6.77 (d, J = 9.3 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 5.90 (d, 2H).

Figure S5. The purity of **Ir-OH** detected by LC-MS (top) and its relative mass spectrogram (bottom). The enlarged part showed the amplified mass spectrogram of **Ir-OH**.

Figure S6. The purity of $Ir-B(OH)_2$ detected by LC-MS (top) and its relative mass spectrogram (bottom). The enlarged part of the mass spectrogram indicated that the mono-, di, and tri-methyl boronic ester had been formed under the testing condition with CH₃OH.

Figure S7. Elemental mapping of Ir@SeNPs with the elements Ir or Se marked in different colors.

Figure S8. Size distribution of **SeNPs** (76.3 \pm 16.8 nm), **Ir@SeNPs** (92.4 \pm 17.3 nm), and **Ir@SeNPs@CC** (99.2 \pm 20.0 nm) determined by dynamic light scattering.

Figure S9. FTIR spectra of SeNPs, Ir-OH, Ir-B(OH)₂, and Ir@SeNPs.

Figure S10. Change in absorption of DPBF at 410 nm upon incubation with **Ir-OH**, **Ir@SeNPs** and Methylene blue (MB) ($OD_{405 \text{ nm}} = 0.12$) and exposure to light irradiation (405 nm, 20 mW cm⁻²). ϕ represented corresponds to the singlet oxygen quantum yield.

Figure S11. Change in absorption of DPBF at 410 nm upon incubation with **Ir-OH**, **Ir@SeNPs**, $[Ru(bpy)_3]^{2+}$, H₂TPP and Rhodamine B (OD_{405 nm} = 0.12) under two-photon light irradiation (405 nm, 50 mW) for different time intervals. The line corresponded to the compounds' linear fitting curves.

Figure S12. Monitoring of the hydrodynamic diameter of **Ir@SeNPs** and **Ir@SeNPs@CC** in saline, FBS or DMEM supplemented with 10% FBS from 0-48 h.

Figure S13. (A) Changes of the absorption of **Ir@SeNPs** ([Ir] = 20 μ M) in the absence of H₂O₂ in PBS/CH₃OH (9/1, v/v) from 0-12 h, inset: changes of absorption at 272 nm. (B) Changes in the absorption of **Ir@SeNPs** ([Ir] = 20 μ M) upon treatment with H₂O₂ in PBS/CH₃OH (9/1, v/v) from 0-200 μ M H₂O₂, inset: changes of absorption at 272 nm.

Figure S14. Release kinetics of Ir@SeNPs ([Ir] = 20μ M) at pH=7.4, pH=7.4 + 100μ M H₂O₂, or pH=5.5 + 100μ M H₂O₂ measured by ICP-MS (n = 3).

Figure S15. ESI-MS spectrum of the treatment of **Ir@SeNPs** with H_2O_2 under acidic condition (pH=5.5) for 24 h.

Figure S16. Changes in the ¹H-NMR spectra upon incubation of **Ir@SeNPs** with H_2O (A) or H_2O_2 (B) in CD₃OD for various time intervals. HRMS detection of methylquinone (C) and its hydrolysis form (D).

Figure S17. Degradation of H_2O_2 (100 μ M) in the presence of **Ir@SeNPs** ([Ir] = 20 μ M) under different treatments from 0-240 min (n = 3).

Figure S18. Relative intracellular H_2O_2 levels of A375 cells upon treatment with **Ir-OH**, **SeNPs**, and **Ir@SeNPs** ([Ir] = 10 μ M, [Se] = 20 μ g mL⁻¹).

Figure S19. Time-dependent UV absorption spectra of the consumption of GSH (1.0 mM) using the GSH specific probe DTNB at 412 nm upon treatment with (A) PBS, (B) **SeNPs**, (C) **Ir@SeNPs**, and (D) **Ir@SeNPs** that were preincubated with H₂O₂ (500 μ M) for 30 min ([Se] = 400 μ g mL⁻¹) from 0-3 h. Their GSH depletion (E) was quantified by using the UV absorption decrease at 412 nm (n=3).

Figure S20. Relative intracellular GSH level of A375 cells upon treatment with **Ir-OH**, **SeNPs**, and **Ir@SeNPs** ([Ir] = 10 μ M, [Se] = 20 μ g mL⁻¹).

Figure S21. Cytotoxicity of A375 cells incubated with cisplatin, **SeNPs**, **Ir-OH**, **Ir@SeNPs**, and **Ir@SeNPs@CC** ([Ir] = 0-40 μ M, [Se] = 0-80 μ g mL⁻¹) upon light irradiation (405 nm, 20 mW cm⁻², 10 min) (n = 3).

Figure S22. Dark cytotoxicity of L02 cells incubated with **SeNPs, Ir-OH, Ir@SeNPs**, and **Ir@SeNPs@CC** ([Ir] = 0-40 μ M, [Se] = 0-80 μ g mL⁻¹).

Figure S23. The cytotoxicity of **Ir@SeNPs** and **Ir@SeNPs@CC** ([Ir] = 0-40 μ M, [Se] = 0-80 μ g mL⁻¹) towards A549 cells, HepG2 cells and MCF-7 cells under dark or light irradiation (405 nm, 10 mW cm⁻², 10 min) (n = 3).

Figure S24. Dark cytotoxicity of RAW 264.7 cells incubated with Ir@SeNPs and Ir@SeNPs@CC ([Ir] = 0-40 μ M).

Figure S25. Flow cytometry analysis of A375 cells incubated with **Ir-OH**, **SeNPs**, and **Ir@SeNPs** ([Ir] = 20 μ M, [Se] = 40 μ g mL⁻¹) in dark or light irradiation (405 nm, 10 mW cm⁻², 10 min) and stained with DCFH-DA.

Figure S26. Flow cytometry analysis of A375 cells incubated with **Ir-OH**, **SeNPs**, and **Ir@SeNPs** ([Ir] = 20 μ M, [Se] = 40 μ g mL⁻¹) in dark or light irradiation (405 nm, 10 mW cm⁻², 10 min) and stained with the mitochondria membrane potential probe JC-1.

Figure S27. The morphology changes (A) of A375 cells incubated with **Ir-OH**, **SeNPs**, and **Ir@SeNPs** ([Ir] = 20 μ M, [Se] = 40 μ g mL⁻¹) before and after two-photon irradiation (730 nm, 20 mW, 5 min), and the relative live (Calcein-AM, green)/death (EthD-1, red) staining (B). Scale bar: 20 μ m.

Figure S28. (A) Effects of **SeNPs** or **Ir@SeNPs** on A375 cells migration in wound migration assays (top: bright field, bottom: Hoechst 33342 stained). Scale bar: 20 μ m. Cells were wounded with pipette in the absence or presence of **SeNPs** or **Ir@SeNPs** ([Se] = 20 μ g mL⁻¹). Scale bar: 100 μ m. (B) Effect of **SeNPs** or **Ir@SeNPs** ([Se] = 20 μ g mL⁻¹) on the expression of phosphorylation of FGFR1 was determined by immunoblotting after 24 h treatment of A375 cells. Beta-actin was detected as a loading control.

Figure S29. Fluorescence microscopy images of A375 MCTS incubated with **SeNPs**, **Ir-OH**, and **Ir@SeNPs** ([Ir] = 20 μ M, [Se] = 40 μ g mL⁻¹) upon treatment in the dark or exposure to two-photon irradiation (730 nm, 20 mW, 5 min). The MCTS were stained with Calcein-AM/EthD-1 (Calcein-AM is a stain for living cells, 2μ M, λ_{ex} = 488 nm, λ_{em} = 510 ± 10 nm; EthD-1 is a stain for dead cells, 4μ M, λ_{ex} = 543 nm, λ_{em} = 610 ± 10 nm). Scale bar = 100 μ m.

Figure S30. Fluorescence images of the major organs of A375 tumor-bearing mice models after injection with **Ir@SeNPs@CC** or **Ir@SeNPs** (5 mg kg⁻¹) for different periods. H: heart, Li: liver, S: spleen, Lu: lung, K: kidneys, T: tumor. λ_{ex} = 430 nm, λ_{em} = 610 nm.

Figure S31. Biodistribution of (A) **Ir@NPs@CC** or (B) **Ir@SeNPs** in major organs and tumors 4, 8, 12, 24 or 48 h after the administration upon determination of the iridium concentration by ICP-MS (n = 3).

Figure S32. Representative H&E stained histopathologic slices of the major organs and tumors of A375 tumor xenograft mice after various treatments. Light irradiation (λ_{ex} = 730 nm, 50 mW, 5 min). Scale bars: 50 µm.

		IC ₅₀					
Compound		A375	A549	HepG2	MCF-7	RAW	L02
S		cells	cells	cells	cells	264.7	cells
						cells	
cisplatin (µM)	Dark	13.2 ± 0.3	-	-	-	-	-
	Light (10 mW)	13.6 ± 0.6	-	-	-	-	-
	PI	1.0	-	-	-	-	-
	Light (20 mW)	13.0 ± 0.5	-	-	-	-	-
	PI	1.0	-	-	-	-	-
A 11 B	Dark	810+12	_	_	_	_	300 + 5 5
	Light (10 mW)	770+02	-	-	-	-	-
Senps	PI	1.0	-	-	-	-	-
(µg mL-1)	Light (20 mW)	79.6 ± 0.8	-	-	-	-	-
	ΡΙ ΄	1.0	-	-	-	-	-
Ir-OH (μM)	Dark	38.3 ± 0.9	-	-	-	-	100 ± 5.4
	Light (10 mW)	13.2 ± 0.3	-	-	-	-	-
	PI	2.9	-	-	-	-	-
	Light (20 mVV)	6.0 ± 0.5	-	-	-	-	-
	PI	6.3	-	-	-	-	-
lr@SeNPs (µM)	Dark	31.0 ± 1.0	49.4 ± 0.5	87.7 ± 0.7	30.0 ± 0.8	27.8± 3.2	32.6 ± 2.6
	Light (10 mW)	7.5 ± 0.5	29.0 ± 0.6	43.0 ± 1.0	17.0 ± 1.0	-	-
	ΡΙ ΄	4.1	1.7	2.0	1.7	-	-
	Light (20 mW)	3.0 ± 0.6	-	-	-	-	-
	PI	10.3	-	-	-	-	-
	Dark	30 + 1 8	870+10	842+10	66.0 + 0.2	102+28	120 + 8 4
lr@SeNPs	Light (10 m\//)	44 + 00	47.0 ± 1.0	34.8 ± 0.5	318+08	40.2 1 2.0	120 1 0.4
220		4.4 ± 0.9 6.8	18	34.0 ± 0.3 2 4	20	-	-
	Light (20 m\//)	23+02	-	2.4	2.0	-	-
(µM)	PI	13.3	-	-	-	-	-

Table S1. Cytotoxicity towards different cell lines upon 405 nm light irradiation or left in dark (10 mw: 10 mW cm⁻², 10 min; 20 mw: 20 mW cm⁻², 10 min; PI: photocytotoxicity index) (n = 3).

Compounds	IC ₅₀			
compounds		A375 MCTS		
SoNDc	Dark	105 ± 6.0		
(ug ml ⁻¹)	Light	97.0 ± 9.2		
(µg IIIL -)	PI	1.0		
Ir-OH	Dark	70.0 ± 5.0		
(111)	Light	35.3 ± 2.0		
(μινι)	PI	2.0		
	Dark	52.0 ± 2.2		
Ir@SeNPs	Light	19.2 ± 1.4		
(μΜ)	PI	2.7		
	Dark	45.3 ± 3.8		
Ir@SeNPs@CC	Light	10 ± 1.9		
(μM)	PI	4.5		

Table S2. Cytotoxicity towards A375 MCTS upon 730 nm two-photon light irradiation (730 nm, 20 mW, 5 min) or left in dark (PI: photocytotoxicity index) (n=3).