Supporting Information

$[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga, In): metal iodate-selenate nonlinear optical materials with hexagonal tungsten oxide-type topology

Qian-Qian Chen,^{a,b} Chun-Li Hu,^a Bing-Xuan Li ^a and Jiang-Gao Mao*^{a,b}

a. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
b. University of Chinese Academy of Sciences, Beijing 100039, P. R. China
Email: mjg@fjirsm.ac.cn

Table of Contents

Section	Title	Page	
Table S1	Selected bond lengths (Å) and the calculated total BVS values for $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga 1, In 2).	S3	
Table S2	Atomic coordinates (×10 ⁴) and equivalent isotropic displacement parameters (Å ² ×10 ³) for $[M(OH)_{2}]_{3}(IO_{3})(SeO_{4}) \cdot H_{2}O$ (M = Ga 1, In 2).		
Table S3	The assignments of the infrared absorption peaks for $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga, In).		
Table S4	Calculated dipole moments for GaO_6 , IO_3 , and SeO_4 , as well as net dipole moment for a unit cell in $[Ga(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$.		
Figure S1	Simulated and experimental powder X-ray diffraction patterns of $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).	S6	
Figure S2	SEM images and their elemental distribution maps of $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).		
Figure S3	The coordination geometries around the Ga^{3+} , I^{5+} and Se^{6+} ions in $[Ga(OH)_2]_3(IO_3)(SeO_4)\cdot H_2O$.	S7	
Figure S4	TGA and DTA curves of $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)) under the N ₂ atmosphere.		
Figure S5	The powder X-ray diffraction patterns of the residuals of $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)) after decomposition at 1000 °C.		
Figure S6	IR spectra for $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)). S		
Figure S7	UV-vis-IR spectra of $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).		
Figure S8	The calculated band structure of $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).	S9	
Figure S9	The partial and total density of states for $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).	S10	
Figure S10	The calculated refractive indices for $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).	S10	

1		2	
Ga(1)-O(1)	1.944(2)	In(1)-O(1)	2.121(3)
Ga(1)-O(1)#1	1.944(2)	In(1)-O(1)#1	2.121(3)
Ga(1)-O(2)	1.922(2)	In(1)-O(2)	2.094(3)
Ga(1)-O(2)#4	1.922(2)	In(1)-O(2)#4	2.094(3)
Ga(1)-O(3)	2.000(7)	In(1)-O(3)	2.162(8)
Ga(1)-O(4)	2.067(7)	In(1)-O(4)	2.205(8)
BVS (Ga)	3.20	BVS (In)	3.23
I(1)-O(3)	1.807(6)	I(1)-O(3)	1.797(8)
I(1)-O(3)#1	1.807(6)	I(1)-O(3)#1	1.797(8)
I(1)-O(3)#2	1.807(6)	I(1)-O(3)#2	1.797(8)
BVS (I)	5.10	BVS (I)	5.24
Se(1)-O(4)	1.646(7)	Se(1)-O(4)	1.635(9)
Se(1)-O(4)#3	1.646(7)	Se(1)-O(4)#3	1.635(9)
Se(1)-O(4)#4	1.646(7)	Se(1)-O(4)#4	1.635(9)
Se(1)-O(5)	1.616(11)	Se(1)-O(5)	1.606(15)
BVS (Se)	6.00	BVS (Se)	6.17
O(1)-H(1)	0.7920	O(1)-H(1)	0.8353
O(2)-H(2)	0.8196	O(2)-H(2)	0.8565

Table S1. Selected bond lengths (Å) and the calculated total BVS values for $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga 1, In 2).

Symmetry transformations used to generate equivalent atoms: #1 -x+y, -x, z; #2 -y, x-y, z; #3 -x+y, -x+1, z; #4 -y+1, x-y+1, z.

		1		
Atom	X	У	Z	U(eq)
Ga(1)	1673.0(9)	3346.0(17)	5086.1(10)	8.1(2)
I(1)	0	0	2785.4(8)	9.6(2)
Se(1)	3333.33	6666.67	7214.3(11)	8.0(3)
O(1)	-1245(5)	1245(5)	5490(5)	10.8(12)
O(2)	757(10)	5379(5)	4779(6)	11.5(13)
O(3)	1283(5)	2566(10)	3476(6)	13.3(13)
O(4)	2097(5)	4194(10)	6744(6)	12.6(13)
O(5)	3333.33	6666.67	8556(9)	15(3)
O(1W)	-3333.33	3333.33	6861(15)	47(5)
		2		
Atom	X	У	Z	U(eq)
In(1)	1675.9(6)	3351.7(12)	5118.0(9)	10.33(19)
I(1)	0	0	2758.4(9)	14.9(3)
Se(1)	3333.33	6666.67	7299.9(13)	12.3(4)
O(1)	-1243(6)	1243(6)	5635(6)	13.7(17)
O(2)	714(12)	5357(6)	4711(6)	17.7(18)
O(3)	1189(6)	2379(12)	3431(7)	21.1(19)
O(4)	2194(6)	4388(13)	6831(6)	22(2)
O(5)	3333.33	6666.67	8615(12)	20(4)
O(1W)	-3333.33	3333.33	6940(20)	89(10)

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å² ×10³) for $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga 1, In 2).

IR peak (cm ⁻¹)	Assignment
3700-3200	O-H stretching bands
1637	H-O-H bending mode
1130-950	v ₃ asymmetric stretching of Se-O
950-823	v ₃ asymmetric stretching of I-O
823-670	v ₁ symmetric stretching of I-O
630-400	v_4 asymmetric bending of Se-O and v_2 symmetric bending of I-O

Table S3. The assignments of the infrared absorption peaks for $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga, In).

Table S4. Calculated dipole moments for GaO₆, IO₃, and SeO₄, as well as net dipole moment for a unit cell in $[Ga(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$.

$[Ga(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O (Z = 2)$				
	Dipole moment (D = Debyes)			
Polar unit	total magnitude	x-component	y-component	z-component
$Ga(1)O_6$	0.827	(±0.004)×3	$(\pm 0.079) \times 3$	(0.823)×6
I(1)O ₃	13.891	0×2	$\pm 8.824 \times 10^{-6}$	13.891×2
$Se(1)O_4$	0.162	0×2	$\pm 8.994 \times 10^{-5}$	(-0.162)×2
Net dipole moment (a unit cell)	32.396	0	0	32.396

Figure S1. Simulated and experimental powder X-ray diffraction patterns of $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).

Figure S2. SEM images and their elemental distribution maps of $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).

Figure S3. The coordination geometries around the Ga^{3+} , I^{5+} and Se^{6+} ions in $[Ga(OH)_2]_3(IO_3)(SeO_4)\cdot H_2O$.

Figure S4. TGA and DTA curves of $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)) under the N₂ atmosphere.

Figure S5. The powder X-ray diffraction patterns of the residuals of $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)) after decomposition at 1000 °C.

Figure S6. IR spectra for $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).

Figure S7. UV-vis-IR spectra of $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).

Figure S8. The calculated band structure of $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).

Figure S9. The partial and total density of states for $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).

Figure S10. The calculated refractive indices for $[M(OH)_2]_3(IO_3)(SeO_4) \cdot H_2O$ (M = Ga (a), In (b)).