Electronic Supporting Information

Lead-Free Hybrid Indium Perovskites with Near-Unity

PLQY and White-Light Emission by Sb³⁺ Doping Strategy

Ling-Kun Wu, ^a Ren-Fu Li, ^{*b} Wei-Yang Wen, ^b Qing-Hua Zou, ^b Heng-Yun Ye^{a, c} and Jian-Rong Li^{*a, c}

* **Correspondence:** Corresponding Author: Jian-Rong Li, jrli@fjirsm.ac.cn, Ren-Fu Li, lirenfu@fjirsm.ac.cn.

^a Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.

^b Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

^c Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.

Contents

Part 1. Experimental section	51-83
Part 2. Supporting figures	54-S10
Part 3. Crystallographic data SI	1 - 514

Part 1. Experimental section

1.1 Materials

All reagents were purchased commercially and used without further purification. Indium powder (99.99%, Jiangsu Aikon), Sb₂O₃ (99.5%, Macklin), diethylenetriamine (DETA) (99%, Macklin), deionized water, hydrochloric acid (HCl, 36-38 wt% aqueous solution, Sinopharm Chemical Reagent Co., Ltd.).

1.2 Synthesis

3 mmol diethylenetriamine and 1 mmol indium powder were placed in a 25 mL glass bottle. Then, 5 mL HCl and 8 mL water was added to the mixture. A clear solution was obtained with continuous magnetic stirring at room temperature. After 12 hours of volatilization, bulk crystals crystallized from the solution, yield, 0.285 g, 66.3% based on In. The synthetic route for Sb-doped samples was similar to that of the pure (DETA)InCl₆ with the Sb₂O₃ added for the targeted compositions. The element analysis for (DETA)InCl₆:10%Sb³⁺. Anal. (%) calc.: C 11.15, H 3.04, N 9.76. Found (%): C 11.19, H 3.70, N 9.74. Yield, 0.243 g, 56.66% based on In. And for the (DETA)InCl₆:15%Sb³⁺. Anal. (%) calc.: C 11.15, H 3.04, N 9.76. Found (%): C 11.28, H 3.51, N 9.84. Yield, 0.279 g, 65.0% based on In.

1.3 Characterization

Single-crystal X-ray diffraction data of (DETA)InCl₆ and (DETA)InCl₆:15%Sb³⁺ at 301 K and 297 K were collected on a Rigaku synergistic diffractometer with Mo-K α (λ = 0.71073 Å) radiation from a graphite monochromator. The crystal structure of (DETA)InCl₆ was solved using the direct method and refined using the full matrix method from the F^2 data of the Olex2 software package.¹ Powder X-ray diffraction patterns were recorded on a Rigaku DMax 2500 powder diffractometer. Solid-state optical diffuse reflectance spectroscopy was measured on a Shimadzu 2600 UV/Vis spectrometer with a test range of 800-200 nm using a BaSO₄ plate as a standard. Raman spectral recordings were performed on an nVia RM2000. XPS measurements were performed on ESCALAB 250Xi. Surface morphology and elemental analysis were observed using a field emission scanning electron microscope (FEI Nova NanoSEM 450) equipped with an energy dispersive X-ray spectrometer (Inca Energy X-Max20). TG analyses were recorded on a NETZSCH STA 449F3 instrument with a heating rate of 10 K·min⁻¹ under a dry N₂ atmosphere. Steady-state PL emission and PL excitation (PLE) spectra were measured using a PL spectrometer (FLS980; Edinburgh Instruments). Temperature-dependent steady-state and TRPL spectra were recorded by using a FLS980 spectrometer (Edinburgh) equipped with a continuous xenon lamp (450 W), a pulsed flash lamp, a 375 nm picosecond pulsed laser as well as a temperature control instrument (Linkam THMS600). The absolute PLQY of single crystals were measured by using a standard BaSO₄-coated integrating sphere (150 mm diameter, Edinburgh) as the sample chamber mounted on a FLS980 spectrometer. Inductively coupled plasma mass spectrometry (ICP-MS) testing was performed on the XSerise II. Chromaticity coordinate, CCT and CRI of PiG-based WLEDs were measured in an integrated sphere of 50 cm diameter, which was connected to a CCD detector with an optical fiber from Everfine (HAAS-2000, Everfine Photo-E-Info Co. LTD.).

1.4 Theoretical Band Calculation

Calculations were performed by using the Dmol3 module in the Materials Studio

package.^{2, 3} The exchange–correlation inter-actions were described by using Perdew– Burke–Ernzerhof (PBE) general gradient approximation (GGA) method with the double numerical basis sets plus polarization function (DNP).⁴ The SCF tolerance was set as 10^{-6} eV per atom. The Fermi smearing of 0.005 Hartree was selected to accelerate convergence. Monkhorst–Pack grid of $3\times3\times3$ for (DETA)InCl₆ and (DETA)InCl₆:15%Sb³⁺ were utilized in the Brillouin-zone integrations, respectively.

Part 2. Supporting figures

Figure S1. Detailed view of adjacent [InCl₆]³⁻ in compound (DETA)InCl₆.

Figure S2. TG curves of (DETA)InCl₆:x%Sb³⁺ (x = 0, 0.005, 15) in the temperature range of 20 – 700°C.

(DETA)InCl ₆ :x%Sb ³⁺	Sb nominal / mol%	Sb actual / mol%
0.005%	0.005%	0.0043%
0.01%	0.01%	0.0086%
10%	10%	8.56%
15%	15%	15.42%

Table S1 ICP-MS for (DETA)InCl₆:x%Sb³⁺

Figure S3. EDX spectrum of (DETA)InCl₆:15%Sb³⁺, showing the elements of C, N, Cl, In, and Sb in the (DETA)InCl₆:15%Sb³⁺, the inset shows the atomic percentage of each element in the chemical composition of the (DETA)InCl₆:15%Sb³⁺.

Figure S4. XPS characterization of 15%Sb³⁺:(DETA)InCl₆ single crystal.

Figure S5. PL emission spectra of $(DETA)_3InCl_6$ and $(DETA)Cl_3$ under excited at 325 nm.

Figure S6. Images of crystal (DETA)InCl₆:xSb³⁺ doped with various Sb contents under sunlight (top) and UV light (bottom).

Figure S7. The CIE diagram of (DETA)InCl₆:0.005%Sb³⁺ under the excitation band of 290 nm-385 nm and the picture of sample under 365 nm UV excitation.

Figure S8. Normalized PL spectra of (DETA)InCl₆:10%Sb³⁺ measured at different excitation wavelengths.

Figure S9. (a) Excitation line of reference (324 nm) and emission spectrum of: (DETA)InCl₆ collected by an integrating sphere. (b) Excitation line of reference (342 nm) and emission spectrum of 10% Sb³⁺: (DETA)InCl₆ collected by an integrating sphere.

Figure S10. (a) Temperature-dependent PL spectra of (DETA)InCl₆:10%Sb³⁺ excited by 342 nm (77–377 K). (b) The CIE chromaticity coordinates of 77–377 K for (DETA)InCl₆:10%Sb³⁺.

Figure S11. PIA decay curves of the (DETA)InCl₆:10%Sb³⁺ by monitoring at 450, 475, 495, and 555 nm, respectively.

Figure S12. PXRD patterns of fresh 10%Sb³⁺: (DETA)InCl₆ after being exposed to air for three months.

Figure 13. Photostability of $(DETA)InCl_6:10\%Sb^{3+}$ exposed to environmental conditions for 7 days.

Figure S14. Drive-current-dependent EL emission spectra.

Part 3. Crystallographic data

	(DETA)InCl ₆	(DETA)InCl ₆ :15%Sb
T/K	301	297
Formula weight	433.72	433.72
Crystal system	monoclinic	monoclinic
Space group	I2/a	<i>I</i> 2/ <i>a</i>
<i>a</i> / Å	13.2661(4)	13.2587(4)
<i>b</i> / Å	7.5660(2)	7.5658(2)
<i>c</i> / Å	28.4784(8)	28.4560(8)
α / \circ	90.00	90.00
eta / °	90.496(3)	90.603(3)
γ/°	90.00	90.00
V / Å ³	2858.31(14)	2854.34(14)
Ζ	8	8
$D_{ m calc}$ / g \cdot cm $^{-3}$	2.016	2.019
μ / mm $^{-1}$	2.747	2.750
<i>F</i> (000)	1697.9	1696.0
2 heta range / °	5.58-61.78	5.572-61.862
Reflns collected	11993	12162
Independent reflns (R_{int})	3553 (0.0287)	3546 (0.0282)
No. of parameters	131	131
$R_1^{[a]}, wR_2^{[b]} [I > 2\sigma(I)]$	0.0649, 0.1450	0.0367, 0.0918
R_1 , wR_2 [all data]	0.0679, 0.1462	0.0425, 0.0945
GOF	1.004	1.021
$\Delta ho^{[c]}$ / ${ m e}\cdot{ m \AA}^{-3}$	1.92, -1.78	0.69, -0.88
CCDC	2243632	2243633

Table S2 Crystal structure and refinement detail of (DETA)InCl₆ and (DETA)InCl₆:15%Sb

^[a] $R_1 = \Sigma ||F_0| - |F_c|| / |F_0|$; ^[b] $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2] / \Sigma w (F_0^2)^2]^{1/2}$; ^[c] maximum and minimum residual electron density.

(DETA)InCl ₆			
In(1)-Cl(1)	2.517(2)	In(2)-Cl(6)	2.472(2)
$In(1)-Cl(1)^{1}$	2.517(2)	$In(2)-Cl(6)^2$	2.472(2)
$In(1)-Cl(2)^{1}$	2.542(2)	$Cl(1)^{1}-In(1)-Cl(1)$	86.58(11)
In(1)-Cl(2)	2.542(2)	$Cl(2)^{1}-In(1)-Cl(1)$	92.34(8)
In(1)-Cl(3)	2.485(2)	Cl(2)-In(1)-Cl(1)	87.33(8)
$In(1)-Cl(3)^{1}$	2.485(2)	$Cl(2)-In(1)-Cl(1)^{1}$	92.34(8)
$In(2)-Cl(5)^2$	2.544(2)	$Cl(2)^{1}-In(1)-Cl(2)$	179.55(13)
In(2)-Cl(5)	2.544(2)	$Cl(3)-In(1)-Cl(1)^{1}$	91.50(8)
$In(2)-Cl(4)^2$	2.524(2)	$Cl(3)^{1}-In(1)-Cl(1)^{1}$	174.90(8)
In(2)-Cl(4)	2.524(2)	Cl(3)-In(1)-Cl(1)	174.90(8)
$Cl(3)^{1}-In(1)-Cl(1)$	91.50(8)	$Cl(4)^{2}-In(2)-Cl(4)$	180.0
$Cl(3)^{1}-In(1)-Cl(2)$	92.29(9)	$Cl(6)-In(2)-Cl(5)^{2}$	90.24(8)
Cl(3)-In(1)-Cl(2)	88.02(8)	$Cl(6)^{2}-In(2)-Cl(5)^{2}$	89.76(8)
$Cl(3)^{1}-In(1)-Cl(2)^{1}$	88.02(8)	Cl(6)-In(2)-Cl(5)	89.76(8)
$Cl(3)-In(1)-Cl(2)^{1}$	92.29(9)	$Cl(6)^{2}-In(2)-Cl(5)$	90.24(8)
$Cl(3)-In(1)-Cl(3)^{1}$	90.80(12)	$Cl(6)^{2}-In(2)-Cl(4)^{2}$	88.62(8)
$Cl(5)^{2}-In(2)-Cl(5)$	180.0	Cl(6)-In(2)-Cl(4)	88.62(8)
Cl(4)-In(2)-Cl(5)	90.31(7)	$Cl(6)-In(2)-Cl(4)^{2}$	91.38(8)
$Cl(4)-In(2)-Cl(5)^{2}$	89.69(7)	$Cl(6)^{2}-In(2)-Cl(4)$	91.38(8)
$Cl(4)^{2}-In(2)-Cl(5)^{2}$	90.31(7)	$Cl(6)-In(2)-Cl(6)^{2}$	180.0
$Cl(4)^{2}-In(2)-Cl(5)$	89.69(7)		

Table S3 Table of selected bond lengths (Å) and bond angles (°) for compounds of(DETA)InCl₆ and (DETA)InCl₆:15%Sb

Symmetry transformations used to generate equivalent atoms: ¹3/2-*x*, +*y*, 1-*z*; ²3/2-*x*, 5/2-*y*, 1/2-*z*.

(DETA)InCl ₆ :15%Sb			
In(1)-Cl(1) ¹	2.5269(11)	$Cl(1)^{1}-In(1)-Cl(2)^{1}$	87.34(4)
In(1)-Cl(1)	2.5269(11)	Cl(1)-In(1)-Cl(2)	87.34(4)
In(1)-Cl(2)	2.5455(12)	$Cl(1)-In(1)-Cl(2)^{1}$	92.38(4)
$In(1)-Cl(2)^{1}$	2.5455(12)	$Cl(1)^{1}-In(1)-Cl(2)$	92.38(4)
$In(1)-Cl(3)^{1}$	2.4790(12)	$Cl(2)-In(1)-Cl(2)^{1}$	179.62(7)
In(1)-Cl(3)	2.4791(12)	$Cl(3)-In(1)-Cl(1)^{1}$	91.58(4)
$In(2)-Cl(4)^2$	2.4706(12)	$Cl(3)^{1}-In(1)-Cl(1)^{1}$	174.81(4)
In(2)-Cl(4)	2.4707(12)	$Cl(3)^{1}-In(1)-Cl(1)$	91.57(4)
$In(2)-Cl(5)^2$	2.5461(12)	Cl(3)-In(1)-Cl(1)	174.81(4)
In(2)-Cl(5)	2.5460(11)	$Cl(3)-In(1)-Cl(2)^{1}$	92.29(5)
$In(2)-Cl(6)^2$	2.5240(11)	$Cl(3)^{1}-In(1)-Cl(2)$	92.29(5)
In(2)-Cl(6)	2.5240(11)	$Cl(3)^{1}-In(1)-Cl(2)^{1}$	87.98(4)

$Cl(1)^{1}-In(1)-Cl(1)$	86.38(6)	Cl(3)-In(1)-Cl(2)	87.98(4)
$Cl(3)^{1}-In(1)-Cl(3)$	90.85(6)	$Cl(5)-In(2)-Cl(5)^{2}$	180.0
$Cl(4)^{2}-In(2)-Cl(4)$	180.0	$Cl(6)-In(2)-Cl(5)^{2}$	89.79(4)
$Cl(4)^{2}-In(2)-Cl(5)$	90.32(4)	Cl(6)-In(2)-Cl(5)	90.21(4)
$Cl(4)-In(2)-Cl(5)^{2}$	90.32(4)	$Cl(6)^{2}-In(2)-Cl(5)^{2}$	90.21(4)
$Cl(4)^{2}-In(2)-Cl(5)^{2}$	89.68(4)	$Cl(6)^{2}-In(2)-Cl(5)$	89.79(4)
Cl(4)-In(2)-Cl(5)	89.68(4)	Cl(6) ² -In(2)-Cl(6)	180.00(5)
$Cl(4)^{2}-In(2)-Cl(6)^{2}$	88.67(5)	C(3)-N(2)-C(2)	111.0(4)
$Cl(4)^{2}-In(2)-Cl(6)$	91.33(5)	N(1)-C(1)-C(2)	113.2(4)
Cl(4)-In(2)-Cl(6)	88.67(5)	N(2)-C(2)-C(1)	113.6(4)
$Cl(4)-In(2)-Cl(6)^{2}$	91.33(5)	N(2)-C(3)-C(4)	114.4(4)

Symmetry transformations used to generate equivalent atoms: ¹3/2-*x*, +*y*, 1-*z*; ²3/2-*x*, 1/2-*y*, 1/2-*z*.

D-H···A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)
N(2)-H(2a)····Cl(5) ¹	0.90	2.633(8)	3.279(8)	129.45(15)
N(2)-H(2b)…Cl(2)	0.90	2.552(8)	3.203(8)	129.78(16)
N(1)-H(1a)…Cl(1)	0.89	2.313(17)	3.172(8)	162(4)
N(1)-H(1b)····Cl(2) ²	0.89	2.326(12)	3.210(8)	172(6)
$N(3)$ - $H(3a)$ ····Cl $(5)^3$	0.89	2.38(3)	3.225(9)	158(6)
$N(3)-H(3c)\cdots Cl(4)^4$	0.89	2.39(5)	3.109(9)	138(6)

Table S4 Hydrogen bonds for (DETA)InCl₆ at 301 K

Symmetry transformations used to generate equivalent atoms: ${}^{1}3/2-x$, ${}^{3}/2-y$, ${}^{1}/2-z$; ${}^{2}1-x$, 1-y, 1-z; ${}^{3}-1/2+x$, 2-y, +z; ${}^{4}+x$, -1+y, +z.

1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42* (2), 339-341.

2. Delley, B., An all-electron numerical method for solving the local density functional for polyatomic molecules. *J. Chem. Phys.* **1990**, *92* (1), 508-517.

3. Delley, B., From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113 (18), 7756-7764.

4. Perdew, J. P., Burke, K., & Ernzerhof, M., Generalized gradient approximationmade simple. *Phys. Rev. Lett.* **1996**, 77 (18), 3865–3868.