Supporting Information for

Mechanistic Insights into the electrochemical reduction of CO₂ to CO on Ni(salphen) complexes

Sara Realista,¹ Paulo J. Costa,² Luisa B. Maia,³ Maria José Calhorda,^{2*} and Paulo N. Martinho^{1*}

¹ Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

² BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal

³ LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | FCT NOVA, Campus de Caparica, 2829-516 Caparica, Portugal

Contents	Page			
Figure S1. Cyclic voltammograms of complex 1 (1 mM) in DMF, argon saturated				
solution using TBAPF ₆ as supporting electrolyte (0.1 M) at different scan rates.				
Glassy carbon was used as working, platinum wire as counter and SCE as				
reference electrodes.	3			
Figure S2. Frontier orbitals of [Ni(salphen)], [1].	3			
Figure S3. Frontier orbitals of [2].	4			
Figure S4. Frontier orbitals of [3].	5			
Figure S5. Structure of [Ni ₂ (salphen) ₂] ²⁻ .	5			
Figure S6. Cyclic voltammograms of complexes 1 and 2 (1 mM) in DMF, carbon				
dioxide saturated solutions using $TBAPF_6$ as supporting electrolyte (0.1 M) at 100				
mV s ⁻¹ . Different concentrations of Brønsted acid (water) added. Glassy carbon was	0			
used as working, platinum wire as counter and SCE as reference electrodes.	6			
Figure S7. CPE results. Behaviour of current during electrolysis of 1 (left) and 3				
right). Inset: Charge passed during electrolysis. Glassy carbon was used as	0			
working electrode, platinum wire as counter and SCE as reference electrode.	6			
Figure S8. CPE results. Benaviour of current during electrolysis of 2 at -1.9 (left)				
and 2.1 V (right). Inset: Charge passed during electrolysis. Glassy carbon was	6			
used as working electrode, platinum wire as counter and SCE as reference	6			
electrode.				
Figure 59. Colour change observation from orange (a) (before electrolysis) to				
brown (b) (after electrolysis). After air injection into the solution colour revens	7			
Figure S10 UV via apartra in H O of colution of 2 ofter CDE and injection of O	7			
Figure S10. OV -vis spectra in H_2O or, solution of Z after OPE and injection of O_2	1			
[Jude line], Same Solution are addition of Fe(II) Solution (red line), Fe(II) Solution.				
monovide saturated solutions using TBAPEs as supporting electrolyte (0.1 M) at				
100 mV saturated solutions using TBAFF6 as supporting electrolyte (0.1 M) at 100 mV s-1 Classy carbon was used as working platinum wire as counter and SCE				
as reference electrodes. Effect of different concentrations of added water	8			
Figure S12 Frontier orbitals of 2[1]	8			
Figure S13. Frontier orbitals of ¹ [1] ²	9			
Figure S14. Frontier orbitals of ³ [1] ² .	10			
Figure S15. a) Current and charge (inset) behavior during CPE of complex 1				
under CO at -1.6 V vs SCE, b) Linear voltammograms before and after				
electrolysis of 1 in DMF using TBAPF ₆ as supporting electrolyte (0.1 M) at 10 mV				
s ⁻¹ . Glassy carbon was used as working electrode, platinum wire as counter and				
SCE as reference electrode	10			
Figure S16. UV-vis spectra obtained for 1 after CPE under CO before and during	11			
exposure of the solution to atmospheric O ₂ .				
Figure S17. Walsh diagram for the conversion of linear into angular CO ₂ : the π	11			
orbitals (left) and H _B -1 Ni-C σ bonding orbital depicting the back donation from the				
metal to the LUMO of CO ₂ (right) in ${}^{3}[1(CO_{2})]^{2}$				
Figure S18 Eroptier orbitals of ${}^{3}I1(\Omega_{2})$ ²⁻	12			
Figure S10. Fromier orbitals of [1(CO ₂)].	12			
3[1] ² with CO_2 in DMF (relative energies AG in kcal mol ⁻¹)				
Figure S20 Experimental and calculated (TDDET black line) spectra of	12			
[Ni(salphen)] (1) The sticks correspond to the calculated wavelengths	12			
Table S1 Relevant TD-DET excitation energies (λ) oscillator strengths (f) and	13			
compositions for complexes [Ni(salphen)] [1]	15			
Figure S21 Absorption spectrum of the CO container species ² [1(CO)]	14			
experimental (red line) and calculated (TDDFT black line) spectra. The sticks	• •			
correspond to the calculated wavelengths.				
Figure S22. Absorption spectrum of the CO container species 3 [1(CO)] + H ₂ O ⁻	14			
experimental (red line) and calculated (TDDFT, black line) spectra. The sticks	••			
correspond to the calculated wavelengths.				
Figure S23. Energy profile for the reactions of the reduced complexes ² [1] ⁻ with	15			
CO_2 (right side, blue) and CO (left side, turquoise). The free energies, ΔG , are given	-			
in kcal mol ⁻¹ and the reference 0 is the energy of ² [1]. The two reduction and the				
spin transition steps are highlighted in both cycles.				

Figure S1. Cyclic voltammograms of complex **1** (1 mM) in DMF, argon saturated solution using TBAPF_6 as supporting electrolyte (0.1 M) at different scan rates. Glassy carbon was used as working, platinum wire as counter and SCE as reference electrodes.

Figure S2. Frontier orbitals of [Ni(salphen)], [1].

Figure S3. Frontier orbitals of [2].

Figure S4. Frontier orbitals of [3].

Figure S5. Structure of [Ni₂(salphen)₂]^{2-.1}

¹ S. Gambarotta, F. Urso, C. Floriani, A. Chiesi-Villa, C. Guastini, Inorg. *Chem.* 1983, 22, 3966-3972

Figure S6. Cyclic voltammograms of complexes **1** and **2** (1 mM) in DMF, carbon dioxide saturated solutions using TBAPF₆ as supporting electrolyte (0.1 M) at 100 mV s⁻¹. Different concentrations of Brønsted acid (water) added. Glassy carbon was used as working, platinum wire as counter and SCE as reference electrodes.

Figure S7. CPE results. Behaviour of current during electrolysis of **1** (left) and **3** right). Inset: Charge passed during electrolysis. Glassy carbon was used as working electrode, platinum wire as counter and SCE as reference electrode.

Figure S8. CPE results. Behaviour of current during electrolysis of **2** at -1.9 (left) and 2.1 V (right). Inset: Charge passed during electrolysis. Glassy carbon was used as working electrode, platinum wire as counter and SCE as reference electrode.

Figure S9. Colour change observation from orange (a) (before electrolysis) to brown (b) (after electrolysis). After air injection into the solution colour reverts back to orange (c).

Figure S10. UV-vis spectra in H_2O of: solution of **2** after CPE and injection of O_2 (blue line); same solution after addition of Fe(II) solution (red line); Fe(II) solution.

Figure S11. Cyclic voltammograms of complex **3** (1 mM) in DMF, argon and carbon monoxide saturated solutions using TBAPF₆ as supporting electrolyte (0.1 M) at 100 mV s⁻¹. Glassy carbon was used as working, platinum wire as counter and SCE as reference electrodes.

Figure S12. Frontier orbitals of ²[1]⁻.

Figure S13. Frontier orbitals of ¹[1]²⁻.

Figure S14. Frontier orbitals of ³[1]²⁻.

Figure S15. a) Current and charge (inset) behavior during CPE of complex 1 under CO at -1.6 V vs SCE. b) Linear voltammograms before and after electrolysis of 1 in DMF using TBAPF₆ as supporting electrolyte (0.1 M) at 10 mV s⁻¹. Glassy carbon was used as working electrode, platinum wire as counter and SCE as reference electrode.

Figure S16. UV-vis spectra obtained for **1** after CPE under CO before and during exposure of the solution to atmospheric O_2 .

Figure S17. Walsh diagram for the conversion of linear into angular CO₂: the π orbitals (left) and H_β-1 Ni-C σ bonding orbital depicting the back donation from the metal to the LUMO of CO₂ (right) in ³[1(CO₂)]²⁻.

Figure S18. Frontier orbitals of ${}^{3}[1(CO_{2})]^{2}$.

Figure S19. Energy profile for the reactions of the reduced complexes 2 [1]⁻ and 3 [1]² with CO₂ in DMF (relative energies, Δ G, in kcal mol⁻¹).

Figure S20. Experimental and calculated (TDDFT, black line) spectra of [Ni(salphen)] **[1]**. The sticks correspond to the calculated wavelengths.

Table S1. Relevant TD-DFT excl	itation energies (λ),	oscillator stre	ngths (<i>f</i>) and
compositions, for complexes [Ni(salphen)], [1] .		

Complex	λ (nm)	f	Composition	□ _{exp} (nm)
[1]	428	0.1323	H → L (98%)	
	406	0.1551	H-1→L (70%), H→L+1 (26%)	476

Figure S21. Absorption spectrum of the CO container species ²[1(CO)]⁻: experimental (red line) and calculated (TDDFT, black line) spectra. The sticks correspond to the calculated wavelengths.

Figure S22. Absorption spectrum of the CO container species 3 [1(CO)] + H₂O: experimental (red line) and calculated (TDDFT, black line) spectra. The sticks correspond to the calculated wavelengths.

Figure S23. Energy profile for the reactions of the reduced complexes 2 [1]⁻ with CO₂ (right side, blue) and CO (left side, turquoise). The free energies, ΔG , are given in kcal mol⁻¹ and the reference 0 is the energy of 2 [1]⁻. The two reduction and the spin transition steps are highlighted in both cycles.