Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting information

Developing dual-mode material with ultraviolet and visible persistent Iuminescence for multi-mode anti-counterfeiting and information encryption Lin Liu^{abc,¢}, Jixuan Xu^{ab,¢}, Yiang Li^{ab}, Shanshan Peng^{ab}, Peng Lin^{ab}, Hongyun Zhong^{ab}, Liang Song^{ab}, Junpeng Shi^{abc,} Xia Sun^d, * and Yun Zhang ^{abc, *} ^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China ^bXiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China

^dFujian Science and Technology Innovation Laboratory for Optoelectronic Information

of China, Fuzhou 350108, China

E-mail: sunxia@fjoel.cn;

E-mail: zhangy@fjirsm.ac.cn

&: Author Lin Liu and author Jixuan Xu contributed equally to this work.

Figure S1. UV-Vis absorption spectrum of MLGO:Bi³⁺.

Figure S2. PersL and PL emission spectra of MYGO:Bi³⁺.

Figure S3. PersL emission spectra of MYGO:x%Bi³⁺.

Figure S4. PL emission spectrum of MYGO:Pr³⁺.

Figure S5. PersL decay curve of MLGO:0.5%Bi³⁺,0.5%Pr monitoring at 615 nm.

Figure S6. PersL emission spectra of MYGO:x%Pr³⁺.

Figure S7. PL emission spectrum of MYGO:Tb³⁺.

Figure S8. PersL decay curve of MLGO:0.5%Bi³⁺,0.5%Tb monitoring at 540 nm.

Figure S9. PersL emission spectra of MYGO:x%T