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Chemicals and materials1

Ferric chloride hexahydrate (FeCl3·6H2O), Sodium tungstate2

dihydrate(Na2WO4·2H2O) potassium hydroxide (KOH), hydrofuloric acid (HF) and3

hydrochloric acid (HCl) were purchased from Aladdin Ltd (Shanghai, China).4

Commercial IrO2 and Pt/C was purchased from Sigma-Aldrich. Nafion solution (55

wt%) provided by Dupont China Holding Co., Ltd (Tianjin, China). Ni Foam with a6

thickness of 1.6 mm and 120 ppi (pore per square inch) was purchased from Jia Shide7

Foam Metal Co., Ltd (Suzhou, China). Deionized water was used throughout the8

experiments.9

Material characterizations10

The morphology of nanoparticles was observed by SEM (Hitachi S4800). All11

samples for the TEM analysis prepared by depositing a drop of the diluted suspension12

in ethanol on carbon film-coated copper grid. The high-resolution transmission13

electron microscopy (HRTEM, JEM-2010FEF) was conducted on an FEI TECNAI14

F20 microscope at an acceleration voltage of 200 kV. The crystal phase of all15

synthesized materials was determined by powder XRD using a PANalytical Empyrean,16

Netherlands X-ray diffractometer with Cu Kα radiation source. X-Pay photoelectron17

spectroscopy (XPS) measurements were performed with a VG Scientific ESCALAB18

210 electron spectrometer using Mg KR radiation under a vacuum of 2×10-8 Pa at 1419

KV.20

21
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Electrochemical measurements1

All electrochemical measurements were performed in a conventional2

three-electrode system at room temperature using a CHI 660E electrochemical3

analyzer (CHI Instruments, Shanghai, China). A platinum wire was used as counter4

electrode for OER and a graphite road for HER. The reference electrode employed for5

all measurement was a saturated calomel electrode (SCE). The synthesized catalysts6

with a geometric area of 1 cm-2 were directly served as the working electrodes. For7

powdery catalysts, the working electrodes were prepared by dropping catalyst ink8

onto nickel foam with a load of 1 mg cm-2. The inks were obtained by sonicating the9

mixture containing catalysts, 5 mg of catalyst (FeWO4/Fe2O3,Fe2O3, Pt/C and IrO2),10

475 μL of ethanol, 475 μL of water and 50 μL of 5 wt % Nafion for 30 min. The ink11

mix is applied to nickel foam in a load of 1 mg cm-2. The 1 M KOH aqueous solution12

was used as the electrolytes, and all the polarization curves were recorded at a scan13

rate of 5 mV s-1 unless specifically indicated. In HER and OER characterizations, the14

polarization curves were iR-corrected using the equation: EiR-corrected = E-iR, where E15

is the original potential, R is the solution resistance, i is the corresponding current,16

and EiR-corrected is the iR-corrected potential. Polarization curves of all samples for HER17

and OER with 100% iR-compensation.18

Electrochemical impedance spectroscopy (EIS) tests were carried out in a19

frequency ranging from 0.1 Hz to 100 kHz with AC amplitude of 10 mV. Furthermore,20

the HER and OER potentials were converted to RHE scale according to the equation:21

E(vs. RHE) = E (vs. SCE) + 0.059*pH +0.241 V, where the pH value of 13.969 for 122

M KOH.23

24
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ECSA calculation1

Electrochemical capacitance measurements were used to determine the active2

surface area of each catalyst. To estimate the electrochemical active surface area of3

the electrocatalysts, double-layer capacitance (Cdl) was considered in the non-faradaic4

region (-0.654 ~ -0.714 V vs. RHE) of CVs recorded at different scan rates of 20, 40,5

60, 80, 120 and 140 mV s-1. Then, plotting the double-layer charging current at -0.6846

V vs. scan rate yields a linear slope, which is equivalent to twice the value of Cdl.7

Finally, the ECSA was obtained through dividing Cdl by the specific capacitance of8

electrode material. Generally, the specific capacitance for flat surface electrodes is9

0.06 mF cm-2.10

Turnover frequency calculations11

To calculate the per-site turnover frequency (TOF), we used the following formula12

according to previous reports1.13

��� ��� ���� =
#����� �������� ���� �����/��2 ��������� ����

# ������� �����/��2 �������������

The number of total hydrogen turn overs is calculated from the current density using14

the following equation:15

16

#�2 = (� ��
��2 )(

1��−1

1000��
)( 1 ��� �

−1

96485.3�
)( 1 ��� �2

2 ��� �−1
)( 6.022×10

23 �2 ���������
1 ��� �2

)17

= 3.12 × 1015
�2/�
��2 ���

��
��2

The total number of effective surface sites was calculated based on the following18

equation:19

#������������
��2 ��������� ����

=
#������������(���� ��������)

��2 ��������� ����
× ����ℎ���� ������
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Here the roughness factor (Rf) can be determined by the double-layer capacitance1

(Cdl). The surface sites of 2×1015 for the flat standard electrode was used for our2

calculation according to previous results.1 Thus, the number of surface active sites for3

the Ni2P@NC/NF catalyst is estimated to be: (3.95 × 103/60) × 2 × 1015 surface4

sites/cm2 = 1.31 × 1017 surface sites/cm2.5

Therefore, in 1 M KOH solution, the TOF per site for the Ni2P@NC/NF catalyst at6

ŋ100 is calculated as follows:7

(3.12 × 1015
�2/�
��2 /

��
��2 )(45.6

��
��2 )(

1 ��2

6.63 × 1017
) = 1.09 �2/�

Theoretical calculation.8

The Density Functional Theory (DFT) calculations were carried out using the9

Castep module of Materials Studio. The electron exchange and correlation10

interactions were described by adopting the generalized gradient approximation11

(GGA) method with the Perdew-Burke-Ernzerhof (PBE) functional, and the12

interactions between core electrons and valence electrons were described by projector13

augmented-wave (PAW) method. The Monkhorst-Pack grid k-points of 3×3×1 were14

adopted to integrate the Brillouin zone, and the kinetic cut-off energy was set at 40015

eV. The convergence thresholds for energy and force were set at 1.0×10-5 eV/atom and16

0.02 eV Å-1, respectively. The self-consistence field (SCF) tolerance was set to17

1.0×10-5 eV/atom. To calculate the hydrogen adsorption energy, we constructed the18

theoretical models of FeWO4, Fe2O3 and FeWO4,/Fe2O3 heterostructure with the19

vacuum space of 15 Å. The calculations for both FeWO4 and Fe2O3 were conducted20

on (100) and (001) crystal plane according to the literatures, respectively.2 Then, the21

heterostructure model was constructed by adjusting the arrangement of the two22
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surfaces. The Gibbs free energies of hydrogen adsorption (ΔGH*) were calculated as1

follow:2

ΔGH* = ΔEH* + ΔEZPE - TΔS3

Where ΔEH* = E(slab+H*) – E(slab) – EH2/2, ΔEZPE stands for the change in zero-point4

energy and ΔS represents the entropy change.3 Norskov et al. previously reported that5

ΔEZPE -TΔS is approximately 0.24 eV.4Therefore, we take ΔGH* = ΔEH* + 0.24 eV.6

The four sequential electron transfer steps, including adsorption steps (i and iii),7

dissociation steps (ii and iv) and desorption step (v). Considering that the overall8

water decomposition process requires energy 4.92 eV at the standard conditions, the9

energy for at least one step in (i–iv) should be larger or equal to 1.23 eV. For the OER10

in alkaline environment, the whole process occurs via the following four elementary11

steps:12

OH- + * → OH* + e- (1)13

OH* + OH- → O* + H2O + e- (2)14

O* + OH- → OOH* + e- (3)15

OOH* + OH- → O2 + H2O + e- (4)16

The adsorption free energies (ΔG) of OER intermediates can be obtained by ΔGi17

= ΔEi + ΔZPEi - TΔSi, where i means OH*, O* and OOH*. Li et al. previously18

reported that Δ ZPE - T S are 0.06, 0.37 and 0.44 eV for O*, OH* and OOH*,19

respectively.5 Furthermore, the ΔE for OER intermediates was calculated as follow:20
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ΔEOH = E(OH*) - E(*) - [E(H2O) - 1/2E(H2)]1

ΔEO= E(O*) - E(*) - [E(H2O) - E(H2)]2

ΔEOOH = E(OOH*) - E(*) - [2E(H2O) - 3/2E(H2)]3

Therefore, the Gibbs free energy changes for the four elementary steps of OER can be4

expressed as follows:5

ΔG1 = ΔGOH - eU6

ΔG2 = ΔGO - ΔGOH - eU7

ΔG3 = ΔGOOH - ΔGO - eU8

ΔG4 = 4.92 eV - ΔGOOH - eU9

Where U is the potential measured against the normal hydrogen electrode (NHE) at10

standard conditions. Therefore, the theoretical overpotential ( η ) for OER can be11

obtained by the following equation:12

ηOER = max[ΔG1, ΔG2, ΔG3, ΔG4]/e - 1.23 [V]13

14

15

16

17

18

19

20

21

22

23
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Figure1

Fig. S1. (a) XRD pattern and (b)SEM image of FeOOH hybrid.2

3
4

5
Fig. S2. (a) XRD pattern and (b) SEM image of FeOOH@W complex hybrid.6

7
8
9
10
11
12
13
14
15
16
17
18
19
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1
Fig. S3. EDS spectrum of the FeWO4/Fe2O3.2

3
Fig. S4. SEM image of Fe2O3 at different magnifications.4

5
6
7
8
9
10
11
12
13
14
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1
Fig. S5. SEM image of Fe2O3 at different magnifications.2

3

4
Fig. S6. (a-b) HRTEM image image of Fe2O3. (d) Enlarged portion of the white box in5

the Fig. c.6
7
8
9
10
11
12
13
14
15
16
17
18
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1

Fig. S7. XRD pattern of Fe2O3.2
3

4
Fig. S8. (a) XRD pattern of FeWO4.5

6
7
8
9
10
11
12
13
14
15
16
17
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Fig. S9. (a) Nitrogen adsorption-desorption isotherms (b) the pore size distribution1
curves of the FeWO4/Fe2O3 and Fe2O3.2

3
4

Fig. S10. XPS spectra of FeWO4/Fe2O3.5
6
7
8
9

Fig. S11. (a) XRD pattern and (b) XPS spectra of FeWO4/Fe2O3 of Fe 2p after HER10
durability test.11

12
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1

Fig. S12. (a) XRD pattern and (b) XPS spectra of FeWO4/Fe2O3 of Fe 2p after long2
time OER durability test.3

4

Fig. S13. Cyclic voltammogram (CV) curves at different scan rates for (a)5
FeWO4/Fe2O3, (b) Fe2O3, (c) FeWO4, (d) The current density variation at 0.389 V6
versus RHE plotted against the scan rates.7

8
9
10
11

12

13
14
15
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Fig. S14. Nyquist plots of FeWO4/Fe2O3-700 and FeWO4/Fe2O3-900 measured for1
HER at overpotential of 150 mV (A) and (B) for OER at overpotential of 350 mV.2

3

4
Fig. S15. Cyclic voltammogram (CV) curves at different scan rates for (A)5
FeWO4/Fe2O3-700 and (B) FeWO4/Fe2O3-900.6

7
8
9

10
Fig. S16. Theoretical structure models of FeWO4 (100) surface, Fe2O3 (001) surface11
and FeWO4/Fe2O3 interface.12

13
14
15
16
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Fig. S17. In situ FTIR of FeWO4/Fe2O3 at a overpotential of 350 mV in 1 M KOH.1
2

3
Fig. S18. Schematic representation of the separation of hydrogen and oxygen bubbles4
from the surface during water splitting5

6

During the water electrolysis, hydrogen and oxygen gases are formed on the7

surface of the electrodes, and they can only be separated from the surface upon8

reaching sufficient size. The coverage of the electrode surface by the formed bubbles9

can increase the total resistance of the system, resulting in a reduction of the interface10

between the electrode and the electrolyte. Therefore, the accumulation of bubbles11

increases the amount of the overpotential required for electrolysis of water.12
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Before discussing the development of bubble separation strategies from the1

electrode surface, a careful study of the bubble behavior separation from the electrode2

surface during the water electrolysis reaction is required. In general, a bubble can be3

removed from the surface and penetrate the electrolyte when its diameter reaches a4

critical value [45,46]. Schematic represents the separation of hydrogen and oxygen5

bubbles is shown in Fig. above. The motion direction of the bubbles is along the x and6

z-axes. The motion in the x-direction is due to the difference in the concentration of7

gas bubbles in the electrolyte, whereas movement in the z-direction is due to the8

density difference between the gas bubble and the electrolyte. Therefore, the resultant9

force in the x and z-direction determines the direction of motion of the gas bubbles. If10

the bubble separation rate is low on the surface of the electrode, a layer of bubbles is11

formed on the surface, and its thickness will be a function of its height. As the12

schematic Fig. indicates, with increasing height, the thickness of this layer is also13

increased. The low separation rate of the bubbles will increase the effect of the bubble,14

which will increase the IR drop, consequently increasing the overpotential.15

Fig. S19. The saturated performances of homometallic heterojunction FeWO4/Fe2O316
and other control catalysts under high current densities in the electrocatalytic HER17
and OER, respectively.18

when increasing the over-potentials, the working current densities of19

heterojunction FeWO4/Fe2O3 reached the saturated platform statues at around 400 mA20

cm-2 for HER and OER, respectively. Importantly, the similar saturated current21

densities were also observed in the cases of using control catalysts such as Fe2O3, bare22

NF, and IrO2 when increasing the over-potentials. Those comprehensive results23

further implied that the saturation current densities were not only determined by the24
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nature of electrode materials, but also hugely affected by the kinetics of specific1

reaction conditions and experimental set ups.2

3
4

Table S1 HER comparison in 1.0 M KOH with the recently reported literatures5

Materials Tafel slope (mV

dec-1)

η10 / mV Reference

FeWO4/Fe2O3 63.3 38 This work

Ni3N-V2O3-3-1 50 57 [6]

Co/MoN 77.5 52 [7]

1T–MoS2 QS/Ni(OH)2 30 57 [8]

NiMoN/Ni3N-6 76 46 [9]

(Ni, Fe)S2@MoS2 101.22 130 [10]

Ni(OH)2/Ni3S2 49 50 [11]

W2N/WC 58.7 148.5 [12]

Fe3O4-FeS/IF 126.3 η20 120.8 [13]

MoP/MoO2 41 79 [14]

CoP/Co2P 51.8 68 [15]

P-MoS2@CoP/CC 51.2 64 [16]

FeNi3-MoO2/NF 60.1 50.8 [17]

1T-MoS2/CoS2 60 71 [18]

Ni3S2@NiV-LDH/NF 90 126 [19]

6
7
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Table S2 OER comparison in 1.0 M KOH with the recently reported literatures1

Materials Tafel slope

(mV dec–1)

j(mA/m2) OER(mV) Reference

FeWO4/Fe2O3 57 10 315 This work

Fe-CoO/C 60 10 362 [20]

Co9S8@MoS2 94 10 340 [21]

W2N/WC 122.8 10 320 [12]

NiCo2O4/NCNTs/NiCo 89 10 350 [22]

NiO/NiCo2O4 67 10 450 [23]

NiSe2/CoSe2-T 65 10 337 [24]

CoO/CoxP 101 10 370 [25]

Ni3Se4/UCL-3 89.4 10 350 [26]

CoO-MoO2 69 10 312 [27]

Fe2O3-MnO/NF 66 10 370 [28]

CoFe-Co@PNC 81 10 320 [29]

NH2-MIL-88B(Fe) 60 10 410 [30]

NiCoP/C 96 10 330 [31]

CoCx/FeCo@C/rGO 73.9 10 390 [32]

2
3

Table S3. at η = 100 mV, TOF of FeWO4/Fe2O3, Fe2O3 and FeWO4 in 1 M KOH4

solution.5

Colum TOF HER OER

FeWO4/Fe2O3 1.09 s-1 0.2 s-1

Fe2O3 0.56 s-1 0.05 s-1

FeWO4 0.27 s-1 0.03 s-1

6
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Table S4 Summary of overall water-splitting electrocatalysts1
Materials Overpotential (mV@10 mA/cm2) Reference

FeWO4/Fe2O3 1.62 This work

mCo0.5Fe0.5P/rGO 1.66 [33]

MoS2-NiS2/NGF 1.64 [34]

NiS/Ni2P/CC 1.62 [35]

Ni(OH)2/Ni3S2 1.64 [11]

CoCO3@NiFe LDH 1.67 [36]

Fe3O4-CoPx/TiN 1.75 [37]

CoFe@CNWs 1.64 [38]

Co-Co2C/CC 1.63 [39]

Co2P/CoN-in-NCNT 1.64 [40]

Co0.8Fe0.2P/NF 1.67 [41]

CoFeZr oxides/NF 1.63 [42]

CoP@FeCoP/NC 1.68 [43]

MoNi/NiMoOx@NiFe 1.64 [44]

2
3
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