A new 0D-2D CsPbBr$_3$-Co$_3$O$_4$ heterostructure photocatalyst with efficient charge separation for photocatalytic CO$_2$ reduction

Xin Zhong,a,† Xinmeng Liang,a,† Xinyu Lin,a Jin Wang,*a,b Malik Zeeshan Shahid,*a and Zhengquan Li,*a,b

aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China.

bZhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China.

* The authors contributed equally.

Corresponding Author

* E-mail: wangjin@zjnu.edu.cn

* E-mail: zeeshan-nano@zjnu.edu.cn

* E-mail: zqli@zjnu.edu.cn
TABLE OF CONTENTS

1. EXPERIMENTAL SECTION ... 3
 1.1 Materials ... 3
 1.2 Characterization ... 3
 1.3 Photocatalytic activity measurement ... 4
 1.4 Photoelectrochemical measurements ... 4
 1.5 Energy bandgap calculations ... 4

2. SUPPLEMENTARY FIGURES S1-13 ... 6

3. SUPPLEMENTARY TABLES S1-3 .. 18

4. REFERENCES .. 21
1. EXPERIMENTAL SECTION

1.1 Materials
All chemicals were purchased and used without further purification. Lead bromide PbBr$_2$ (99.999%), Cs$_2$CO$_3$ (99.995%), oleic acid (OA, C$_{18}$H$_{34}$O$_2$, 90%), and octadecene (ODE, C$_{18}$H$_{36}$, 99.8%), were purchased from Sigma-Aldrich. Hexane (95%), cyclohexamethylenetetramine (Urotropine, 99.5%, C$_6$H$_{12}$N$_4$), ethanol, and ethyl acetate (EA, 99.8%) were purchased from Aladdin company. Chloride hexahydrate (99%, CoCl$_2$.6H$_2$O) was purchased from Sinopharm chemical reagent. The water used for the experiments was purified by a Millipore Milli-Q system.

1.2 Characterization
Transmission electron microscopy (TEM), high-resolution TEM (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray spectroscopy (EDS) were measured by employing a JEOL JEM-2100F field-emission high-resolution transmission electron microscope operated at 200 kV. The samples were prepared by using EA solution, and a piece of the carbon-coated copper grid was used on which a drop of suspension (of each sample) was precisely placed. The copper grid was dried under ambient conditions and further used for morphological characterization. Zeta sizer Nano-ZS (Malvern Instruments, U.K.) was used to collect Zeta (ζ)-potential data, for which the samples were prepared by dispersing in EA solutions. Philips X’Pert Pro Super X-ray diffractometer with Cu-Kα radiation (λ =1.5418Å) was used to record Powder XRD patterns. Shimadzu 2501PC UV-vis spectrophotometer was employed to investigate the UV-vis absorption spectra. FluoroMax-4 spectrofluorometer (HoribaScientific) and analyzed with an Origin-integrated software (FluoroEssencev2.2) was used to measure the steady-state photoluminescence (PL) spectra. The PL decay spectra were recorded on a photoluminescence spectrometer (FLS980, Edinburgh Instruments Ltd.) with a 380-nm excitation wavelength and a 515-nm emission wavelength with the time-correlated single-photon counting (TCSPC) mode. The lifetime data were analyzed with DataStation v6.6 (Horiba Scientific). ESCALab 250 X-ray photoelectron spectrometer with Al-Kα radiation was used to record X-ray photoelectron spectra (XPS) data in which the calibration was done with C 1s peak at 284.6 eV.
1.3 Photocatalytic activity measurement
In a typical experiment, the as-prepared photocatalysts (5 mg) were first added to a Pyrex photoreactor without using any sacrificial agent. Next, 50 μL of water was added. Then, a rubber septum was used to seal the photoreactor, and then it was vacuumed and subsequently purged with CO2 for 10~20 min in the dark. The photoreactor was then placed in a water bath maintained at 25 °C, stirred, and irradiated by a 300-W Xe lamp with a 400 nm cutoff filter (Solaredge 700, 100 mW·cm⁻²). The product distribution was quantified through periodic headspace gas analysis (500 μL) by gas chromatography (GC, 7820A, Ar carrier, Agilent). Produced CH4 was measured by a flame ionization detector (FID), and CO was converted to CH4 by a methanation reactor and then analyzed by the FID. The isotope-labelled experiments were performed using ¹³CΟ₂ instead of ¹²CΟ₂, and the products were analyzed using gas chromatography-mass spectrometry (GC-MS, 7890A and 5975C, Agilent). The products were separated with GC in advance and reached the MS at different retention times.

1.4 Photoelectrochemical measurements
The Photoelectrochemical measurements were carried out using a three-electrode cell CHI 760E electrochemical station (Shanghai Chenhua, China) with a Pt foil counter electrode and a saturated Ag/AgCl reference electrode. The working electrode was prepared by the dip-coating method. About 1 mg of the photocatalyst was dispersed in 1 mL of hexane and 10 μL Nafion solution to form a slurry. Next, 30 μL of the slurry was dip-coated on the FTO conductive glass with an exposure area of 0.196 cm². Subsequently, the film was dried in a vacuum oven at 80 °C. Then acetonitrile solution with 0.1 mol/L of tetrabutylammonium hexafluorophosphate (TBAPF₆) was used as the electrolyte. The variation of photoinduced current density versus time (I-t curve) was recorded at a 0 V bias potential under visible light switching on and off mode, λ > 400 nm, 300 W Xe lamp (Solaredge 700). The electrochemical impedance spectroscopy (EIS) results were obtained at the open circuit potential using a frequency ranging from 10⁴ Hz to 10⁻¹ Hz.

1.5 Energy bandgap calculations
In relational expression proposed by Tauc, Devis, and Mott i.e., \(αhν = A (hν− E_g)^n \) symbols are denoted as follows; \(h \): plank constant, \(ν \): frequency of vibration, \(α \): absorption coefficient, \(E_g \): band gap, and \(A \): proportional constant. As both constituents i.e., CsPbBr₃ QDs and Co₃O₄ HPs
in heterostructure are direct allowed transition, the calculation of energy bandgap value was based on n=1/2.
Fig. S1 Schematic illustration for the synthesis of CsPbBr\(_3\) QDs via hot-injection method.
Fig. S2 Schematic illustration for the synthesis of Co_3O_4 HPs by calcination route.
The desired quantity of Co_3O_4 HPs was taken (Fig. S3a) and dissolved in absolute ethanol via sonication for 3 minutes (Fig. S3b) to get suspension 1. On the other hand, the required amount of CsPbBr_3 QDs was taken from stock (Fig. S3d), centrifuged (Fig. S3e), and dispersed in ethyl acetate via stirring and sonication for 2 minutes to obtain the suspension 2 (Fig. S3f). This suspension 2 was then placed in the Teflon linen vessel for the subsequent procedure to occur in the dark (Fig. 1c). Next, suspension 1 was swiftly inserted into suspension 2 under vigorous stirring (Fig. 1c), and later on, covered with another Teflon linen vessel directed upside down to achieve a dark environment. The stirring continued for 30 minutes in dark and another 30 minutes in ambient conditions and finally, after washing and drying, the $\text{CsPbBr}_3\cdot\text{Co}_3\text{O}_4$ heterostructure was obtained (Fig. S3g).
Fig. S4 Zeta potential of pristine Co$_3$O$_4$ HPs and CsPbBr$_3$ QDs in the solution of ethyl acetate. The values endorsing the successful coulomb electrostatic interaction between these components to form the Co$_3$O$_4$-CsPbBr$_3$ heterojunction.
Fig. S5 Color transformations of as-prepared samples (a) without UV light irradiation and (b) under UV light illumination.
Fig. S6 Comparative depiction of catalytic activity during 6 hours in terms of produced gas CO and CH\textsubscript{4} by using as-synthesized CsPbBr\textsubscript{3} QDs, Co\textsubscript{3}O\textsubscript{4} HPs, and CsPbBr\textsubscript{3}-Co\textsubscript{3}O\textsubscript{4} heterostructure.
Fig. S7 Influence of various mass ratios in the CsPbBr₃-Co₃O₄ heterostructure over the production of CO and CH₄.
Fig. S8 Mass spectra showing (a) $^{13}\text{CH}_4$ (m/z = 17) and (b)^{13}CO (m/z = 29) generated over CsPbBr$_3$-Co$_3$O$_4$ in the photocatalytic $^{13}\text{CO}_2$ reduction.
Fig. S9 The results confirm the oxidation of water to oxygen during the photocatalytic reduction of CO$_2$.
Fig. S10 TEM image and XRD pattern of CsPbBr$_3$-Co$_3$O$_4$ after 5 consecutive cycles, displaying the stability of both morphology and crystallinity, beneficial for practical applications.
Fig. S11 Nitrogen adsorption-desorption curves for (e) pristine Co$_3$O$_4$ HPs and (f) Co$_3$O$_4$ HPs decorated with CsPbBr$_3$-QDs, and their corresponding Brunauer-Emmett-Teller BET surface area values are mentioned in Table S1.
Fig. S12 Control experiments showing steady-state photoluminescence spectra of Co$_3$O$_4$ HPs.

Under an excitation wavelength at about 630 nm, a weak PL signal was obtained. The peak at 670 nm was probably ascribed to deep-level emission in Co$_3$O$_4$. Note that the as-prepared Co$_3$O$_4$ sample did not display the signals for TRPL.
3. SUPPLEMENTARY TABLES S1-3

Table S1. The photocatalytic activity of various state-of-the-art photocatalysts in comparison with as-prepared CsPbBr$_3$-Co$_3$O$_4$ heterostructure

<table>
<thead>
<tr>
<th>Entry#</th>
<th>Photocatalyst</th>
<th>CO μmol g$^{-1}$h$^{-1}$</th>
<th>CH$_4$ μmol g$^{-1}$h$^{-1}$</th>
<th>*R$_{\text{electron}}$ μmol g$^{-1}$h$^{-1}$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CsPbBr$_3$-Co$_3$O$_4$</td>
<td>35.40</td>
<td>29.2</td>
<td>304.4</td>
<td>This work</td>
</tr>
<tr>
<td>2</td>
<td>CsPbBr$_3$ QDs</td>
<td>14.23</td>
<td>0.39</td>
<td>31.98</td>
<td>This work</td>
</tr>
<tr>
<td>3</td>
<td>CsPbBr$_3$-BiOBr</td>
<td>2.5</td>
<td>26.1</td>
<td>213.8</td>
<td>[1]</td>
</tr>
<tr>
<td>4</td>
<td>BiVO$_4$/CsPbBr$_3$</td>
<td>17</td>
<td>6</td>
<td>82</td>
<td>[2]</td>
</tr>
<tr>
<td>5</td>
<td>Mn-CsPbBr$_3$</td>
<td>7.5</td>
<td>0.58</td>
<td>19.64</td>
<td>[3]</td>
</tr>
<tr>
<td>6</td>
<td>ZnSe–CsSnCl$_3$</td>
<td>57</td>
<td>2</td>
<td>128.32</td>
<td>[4]</td>
</tr>
<tr>
<td>7</td>
<td>CsPbBr$_3$/CTF-1</td>
<td>48.2</td>
<td>0</td>
<td>96.4</td>
<td>[5]</td>
</tr>
<tr>
<td>8</td>
<td>0D CsPbBr$_3$/2D CsPb$_2$Br$_5$</td>
<td>197.11</td>
<td>1.5</td>
<td>406.22</td>
<td>[6]</td>
</tr>
<tr>
<td>9</td>
<td>CsPbBr$_3$/Bi$_2$WO$_6$</td>
<td>50.3</td>
<td>1</td>
<td>108.6</td>
<td>[7]</td>
</tr>
<tr>
<td>10</td>
<td>CsPbBr$_3$/Bi$_2$WO$_6$</td>
<td>9.3</td>
<td>14.3</td>
<td>133</td>
<td>[8]</td>
</tr>
<tr>
<td>11</td>
<td>CsPbBr$_3$/UiO-66(NH$_2$)</td>
<td>8.21</td>
<td>0.26</td>
<td>18.5</td>
<td>[9]</td>
</tr>
<tr>
<td>12</td>
<td>CsPbBr$_3$/QDs</td>
<td>4.125</td>
<td>1.90</td>
<td>23.72</td>
<td>[10]</td>
</tr>
<tr>
<td>13</td>
<td>CsPbBr$_3$ /GO</td>
<td>4.81</td>
<td>2.46</td>
<td>29.32</td>
<td>[10]</td>
</tr>
<tr>
<td>14</td>
<td>Co$_3$O$_4$ (OVs)</td>
<td>51.7</td>
<td>0</td>
<td>103.4</td>
<td>[11]</td>
</tr>
<tr>
<td>15</td>
<td>Co$_3$O$_4$/Al$_2$O$_3$</td>
<td>48.4</td>
<td>0</td>
<td>96.8</td>
<td>[12]</td>
</tr>
<tr>
<td>16</td>
<td>Hollow Co$_3$O$_4$ Dodecahedron</td>
<td>46.3</td>
<td>0</td>
<td>92.6</td>
<td>[13]</td>
</tr>
<tr>
<td>17</td>
<td>Co$_3$O$_4$ nanoparticles</td>
<td>0.73</td>
<td>10</td>
<td>81.48</td>
<td>[14]</td>
</tr>
</tbody>
</table>

*Formula used to calculate the rate of electron consumed: $R_{\text{electron}} = 2R_{\text{CO}} + 8R_{\text{CH}_4}$

Where R_{CO} is the rate of CO evolution, and R_{CH_4} is the rate of CH$_4$ evolution
Table S2. The information of nitrogen adsorption-desorption analysis in terms of BET surface area, average pore size, and total pore volume of as-synthesized Co₃O₄-HPs and CsPbBr₃-Co₃O₄.

<table>
<thead>
<tr>
<th>Samples</th>
<th>BET surface area (m²/g)</th>
<th>average pore size (nm)</th>
<th>total pore volume (cm³/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co₃O₄ HPs</td>
<td>16.902</td>
<td>31.35</td>
<td>0.1325</td>
</tr>
<tr>
<td>CsPbBr₃-Co₃O₄</td>
<td>5.016</td>
<td>21.21</td>
<td>0.0266</td>
</tr>
</tbody>
</table>
Table S3. PL decay parameters of the CsPbBr\(_3\) QDs in comparison with CsPbBr\(_3\)-Co\(_3\)O\(_4\) heterostructure.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\tau_1)</th>
<th>(A_1)</th>
<th>(\tau_2)</th>
<th>(A_2)</th>
<th>(\tau_3)</th>
<th>(A_3)</th>
<th>(\tau_{avg})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsPbBr(_3)-QDs</td>
<td>2.61</td>
<td>72.9%</td>
<td>14.71</td>
<td>23.7%</td>
<td>104.36</td>
<td>3.4%</td>
<td>47.43</td>
</tr>
<tr>
<td>CsPbBr(_3)-Co(_3)O(_4)</td>
<td>3.38</td>
<td>7.5%</td>
<td>18.21</td>
<td>84.2%</td>
<td>103.52</td>
<td>8.3%</td>
<td>45.04</td>
</tr>
</tbody>
</table>

* Determined using the fitting function \(y = B + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3 \exp(-t/\tau_3)\)
4. REFERENCES

1. Z. Zhang, L. Li, Y. Jiang and J. Xu, Step-scheme photocatalyst of CsPbBr\textsubscript{3} quantum Dots/BiOBr nanosheets for efficient CO\textsubscript{2} photoreduction, Inorg. chem., 2022, 61, 3351-3360.

2. X. Y. Yue, L. Cheng, J. J. Fan and Q. J. Xiang, 2D/2D BiVO\textsubscript{4}/CsPbBr\textsubscript{3} S-scheme heterojunction for photocatalytic CO\textsubscript{2} reduction: Insights into structure regulation and Fermi level modulation, Appl. Catal. Environ., 2022, 304, 120979.

4. N. Li, X. Chen, J. Wang, X. Liang, L. Ma, X. Jing, D. L. Chen and Z. Li, ZnSe Nanorods-CsSnCl\textsubscript{3} perovskite heterojunction composite for photocatalytic CO\textsubscript{2} reduction, ACS nano, 2022, 16, 3332-3340.

6. L. Ding, B. Borjigin, Y. Li, X. Yang, X. Wang and H. Li, Assembling an affinal 0D CsPbBr\textsubscript{3}/2D CsPb\textsubscript{2}Br\textsubscript{5} architecture by synchronously in situ growing CsPbBr\textsubscript{3} QDs and CsPb\textsubscript{2}Br\textsubscript{5} nanosheets: enhanced activity and reusability for photocatalytic CO\textsubscript{2} reduction, ACS applied mater. interfaces, 2021, 13, 51161-51173.

7. J. Wang, J. Wang, N. Li, X. Du, J. Ma, C. He and Z. Li, Direct Z-scheme 0D/2D heterojunction of CsPbBr\textsubscript{3} quantum Dots/Bi\textsubscript{2}WO\textsubscript{6} nanosheets for efficient photocatalytic CO\textsubscript{2} reduction, ACS Appl. Mater. Interfaces, 2020, 12, 31477-31485.

11. Q. Zhang, P. Yang, H. Zhang, J. Zhao, H. Shi, Y. Huang and H. Yang, Oxygen vacancies in Co\textsubscript{3}O\textsubscript{4} promote CO\textsubscript{2} photoreduction, Appl. Catal. Environ., 2022, 300, 120729.

13. L. Wang, J. Wan, Y. Zhao, N. Yang and D. Wang, Hollow multi-shelled structures of Co\textsubscript{3}O\textsubscript{4} dodecahedron with unique crystal orientation for enhanced photocatalytic CO\textsubscript{2} reduction, J. Am. Chem. Soc., 2019, 141, 2238-2241.