Electronic Supplementary Information

Metal-involving $C \cdots d_z^2$ -Pt^{II} Tetrel Bonding as a Principal Component of Stacking Interaction between Arenes and the Platinum(II) Square-plane

Eugene A. Katlenok,^{*1} Maxim L. Kuznetsov,² Anton V. Cherkasov³, Dmitry M. Kryukov,¹ Nadezhda A. Bokach,¹ Vadim Yu. Kukushkin^{*1,4}

¹Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation; e-mail: <u>v.kukushkin@spbu.ru</u>

²Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisboa, Portugal

³G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, Russian Federation

⁴Laboratory of Crystal Engineering of Functional Materials, South Ural State University, 76, Lenin Av., 454080 Chelyabinsk, Russian Federation

Content

1. Crystal data and structure refinement	
2. CSD search for π-hole ^{···} M contacts	6
3. Computational details	
3.1. Geometry.	
3.2. QTAIM	34
3.3 ETS-NOCV-CDF	
4. Cartesian coordinates for the studied molecules	
Cartesian coordinate for [1·OFA] (in Å)	
Cartesian coordinate for [1·OFA·1] (in Å)	41
Cartesian coordinate for $[1 \cdot C_6 F_6]$ (in Å)	45
Cartesian coordinate for $[1 \cdot C_6 F_6 \cdot 1]$ (in Å)	47
Cartesian coordinate for $[2 \cdot C_6 F_6]$ (in Å)	51
Cartesian coordinate for $[2 \cdot C_6 F_6 \cdot 2]$ (in Å)	

1. Crystal data and structure refinement

Identification code	$1 \cdot (OFA)_2$	$1 \cdot C_6 F_6$	$2 \cdot C_6 F_6$
Empirical formula	$C_{58}H_{28}F_8N_4O_2Pt_2S_4\\$	$C_{50}H_{28}F_6N_4Pt_2S_4\\$	$C_{42}H_{24}F_6N_4Pt_2S_4$
Formula weight	1483.26	1317.18	1217.07
Temperature/K	100(2)	100.0(5)	100.00(10)
Crystal system	triclinic	monoclinic	monoclinic
Space group	P-1	C2/c	P2/n
a/Å	10.7456(2)	10.02350(10)	10.0312(2)
b/Å	14.0684(2)	29.0365(4)	11.5989(2)
c/Å	16.9039(3)	15.6254(2)	16.5342(3)
α/°	87.4668(13)	90	90
β/°	83.8451(15)	105.9290(10)	98.669(2)
$\gamma^{/\circ}$	70.6288(18)	90	90
Volume/Å ³	2396.78(8)	4373.11(10)	1901.79(6)
Z	2	4	2
$ ho_{calc}g/cm^3$	2.055	2.001	2.125
µ/mm ⁻¹	13.117	14.166	16.211
F(000)	1424.0	2520.0	1156.0
Crystal size/mm ³	$0.17 \times 0.14 \times 0.11$	$0.07 \times 0.06 \times 0.03$	0.15 imes 0.12 imes 0.1
Radiation	$CuK\alpha (\lambda = 1.54184)$	Cu Ka ($\lambda = 1.54184$)	Cu Ka ($\lambda = 1.54184$)
2⊖ range for data collection/°	5.258 to 133.202	6.088 to 141.402	7.622 to 139.996
Index ranges	$\begin{array}{c} \text{-12} \leq h \leq 12, \text{-16} \leq k \leq \\ 11, \text{-20} \leq l \leq 19 \end{array}$	$\begin{array}{c} -12 \leq h \leq 11, -35 \leq k \leq \\ 33, -18 \leq l \leq 19 \end{array}$	$-12 \le h \le 12, -9 \le k \le 14, -20 \le 1$ ≤ 20
Reflections collected	16859	14582	15928
Independent reflections	$\begin{array}{l} 16859 \; [R_{int} = n/a, R_{sigma} \\ = 0.0209] \end{array}$	$4181 \ [R_{int} = 0.0384, R_{sigma} \\= 0.0307]$	$3607 [R_{int} = 0.0394, R_{sigma} = 0.0333]$
Data/restraints/parameter s	16859/0/704	4181/180/342	3607/0/252
Goodness-of-fit on F ²	1.015	1.034	1.035
Final R indexes [I>=2σ (I)]	$R_1 = 0.0540, wR_2 = 0.1545$	$R_1 = 0.0275, wR_2 = 0.0719$	$R_1 = 0.0298, wR_2 = 0.0750$
Final R indexes [all data]	$R_1 = 0.0626, wR_2 = 0.1651$	$R_1 = 0.0288, wR_2 = 0.0729$	$R_1 = 0.0314, wR_2 = 0.0762$
Largest diff. peak/hole / e $Å^{-3}$	2.86/-1.51	2.09/-0.81	2.54/-1.24
CCDC Nos	2245750	2245749	2245751

Table S1. Crystal data and structure refinement for $1 \cdot (OFA)_2$, $1 \cdot C_6F_6$, and $2 \cdot C_6F_6$.

Figure S1. A fragment of the crystal structure of $1 \cdot C_6 F_6$. Short contacts are given by dotted lines and thermal ellipsoids are shown at the 50% probability level

Figure S2. A fragment of the crystal packing of $1 \cdot (OFA)_2$.

Figure S3. A fragment of the crystal packing of $1 \cdot C_6 F_6$.

Figure S4. A fragment of the crystal packing of $2 \cdot C_6 F_6$.

2. CSD search for π -hole····M contacts

We analyzed the Cambridge Structural Database¹ (CSD version 5.43 updates March, 2022; search and processing was carried out in the program ConQuest version 2022.2.0) (**Table S2**) to demonstrate the occurrence of short contacts between a π -hole and a metal ion. The search was

carried out based on the following three geometrical parameters: (i) Cg···M distances were set in the range from 3.0 to 4.5 Å (where Cg is centroid of an aromatic ring; M is a transition metal in a square-planar environment), (ii) the angle between the normal of the aromatic ring varied from 0 to 45°; (iii) only structures with halogen substituents at an aromatic ring were considered. Notably, C(isocyanide)···M contacts can also be considered as π -hole···M interaction and we found several examples of relevant contacts in CSD (**Table S2**, group 3). We did consider not include these results because of the difference of C(isocyanide)····M contacts from contacts involving aromatic ring π -hole; the latter are closer to structures obtained in this work.

According to these criteria, we revealed 60 structures with π -hole···M short contacts; they were divided into two groups. The first group consists of 33 structures (blue dots, **Figure S5** and **Table S2**, group 1) of cocrystals formed on cocrystallization of perfluoro(het)arenes (including substituted fluorinated derivatives) with mononuclear platinum(II), palladium(II), nickel(II), copper(II), and gold(I) complexes. In this group, typical π -hole···M separations are of 3.2–4.2 Å with the angles in the range 0–35°.

The second group (27 structures, black dots, **Figure S2**) includes contacts in the crystal structures of metal complexes and metalloporphyrins bearing perfluoroaromatic ligands.² These contacts are most likely induced by crystal packing effects as follows from more diffuse character of the scatter in bond lengths and angles (3.3–4.6 Å and 6–44°). All identified contacts include only mononuclear Pt^{II}, Pd^{II}, Ni^{II}, and Au^{III} complexes, while binuclear (or higher) complexes functioning as acceptors of π -hole…[M–M] interactions were not found.

Figure S5. Angular distribution for intermolecular π -hole…M contacts retrieved from the CSD. The distances were set as the range between 3.0 and 4.5 Å, while the angularity was set in the 0–

40° range. *R* factor $\leq 6\%$.

Table S2. Results of CSD search for π -hole…M contacts.

	Refcode	$d(C\cdots M),$	d(Cg···M),	Θ(Cg···M),°	d(C···M)/	Type of	Ref		
		Å	Å		ΣAvdW	interaction			
	Group 1 (X–	$\mathbb{C}\cdots M$), $X = Ha$	al						
M = Pt									
	FEBLAD	3.584(5)	3.4677(16)	7.30	0.883	Classified as π- hole…Pt ^{II} interaction	3		
A second	GEMWUS	3.543(11)	3.418	6.29	0.873	Classified by as π-π stacking	4		
	JUXBIQ	3.3418(16)	3.622	23.347	0.823	Classified as π- hole…Pt ^{II} interactions	5		

	MIRHIH	3.8456(14)	4.209	25.674	0.947	Classified as π-π stacking	6
to the second se	MIRHUT	3.6930(15)	4.089	30.529	0.910	Classified as π-π stacking	6
	NUQTEA	3.863(3)	4.231	25.273	0.951	Classified as π-π stacking	7

	NUQTIE	3.8332(16)	4.181	24.98	0.944	Classified as π-π stacking	7
A Contraction	OJIXEK	3.528(8)	4.101	34.97	0.869	Classified as π- interactions	8
	PUNNIY	3.405(3)	3.322	8.78	0.839	Classified as π- hole…Pt ^{II} interaction	9

PUNNUK	3.347(5)	3.655	25.171	0.824	Classified as π- hole…Pt ^{II} interaction	9
 PUNPAS	3.316(4)	3.606	24.915	0.817	Classified as π- hole…Pt ^{II} interaction	9
PUNPEW	3.576(9)	3.343(5)	7.18	0.881	Classified as π- hole…Pt ^{II} interaction	9

PUNPIA	3.563(4)	3.3371(14)	2.50	0.878	Classified as π - hole…Pt ^{II} interaction	9
RIRKOV	3.329(5)	3.394	15.075	0.820	Classified as π- hole…Pt ^{II} interaction	10
RIRMEN	3.557(2)	3.28125(15)	0	0.876	Classified as π - hole…Pt ^{II} interaction	10
ULUZIN	3.555(5)	3.882	28.246	0.876	Classified as π - hole…Pt ^{II} interaction	11

and and a	ULUZOT	3.394(7)	3.537	17.671	0.836	Classified as π- hole…Pt ^{II} interaction	11
the stand	ULUZUZ	3.489(5)	3.53	12.847	0.859	Classified as π- hole…Pt ^{II} interaction	11
the second secon	UMACAP	3.456(5)	3.786	27.289	0.851	Classified as π- hole…Pt ^{II} interaction	11
	М	= Pd	•		•		
	CANZEA	3.56(1)	3.474	8.35	0.908	Classified as π- hole…Pd ^{II} interaction	12

CANZOK	3.577(3)	3.485	17.17	0.913	Classified as π- hole…Pd ^{II} interaction	12
CAPBAA	3.507(3)	3.308	3.83	0.895	Classified as π- hole…Pd ^{II} interaction	12
CAPBEE	3.641(4)	3.404	2.21	0.929	Classified as π- hole…Pd ^{II} interaction	12

Jest J	FEBKUW	3.581(4)	3.4527(13)	6.66	0.914	Classified as π- hole…Pd ^{II} interaction	
	RIRMAJ	3.5119(8)	3.228(15)	0	0.896	Classified as π- hole…Pd ^{II} interaction	10
	RIRMIR	3.423(2)	3.32670(7)	8.349	0.873	Classified as π- hole…Pd ^{II} interaction	10

A A A A A A A A A A A A A A A A A A A	EKUJAW	3.364(9)	3.672	26.71	0.822	Classified as π-acid– base interactions	13
	VOQCAF	3.545(8)	3.685	16.62	0.867	Classified as π-acid– base interactions	14
	XASNOV	3.516(12)	3.819(5)	23.42	0.860	Classified as π- interactions	15
	М	= Ni					

	FEBKIK	3.668(3)	3.4988(10)	4.52	0.880	Classified as π- hole…Ni ^{II} interaction	3
To the second se	FEBKOQ	3.576(3)	3.4532(10)	6.67	0.858	Classified as π- hole…Ni ^{II} interaction	3
Africat	LAGHUA	3.591(4)	3.504	7.382	0.861	This contact was not mentioned in the original article	16

	PEHVEH	3.632(3)	3.5312(11)	6.91	0.875	Classified as π- hole…Cu interaction	17
	Group 2	$\frac{(F - C \cdots M)}{= Pt}$					
The state	ACUZUW	3.930(2)	4.1917(9)	23.66	0.968	This contact was not mentioned in the original article	18
HAR AND	ADELED	3.493(9)	3.886	27.207	0.860	This contact was not mentioned in the original article	19
the second	AVEWAA	3.399(3)	3.368	10.65	0.837	Classified as π- stacking and Coulomb forces	20

 AVEWEE	3.435(4)	3.419	13.492	0.846	Classified as π - stacking and Coulomb forces	20
BACXEJ	3.746(6)	4.056(2)	25.0	0.923	These contacts were not mentioned in the original article	21
BARVEW	3.56(1)	4.357	44.284	0.877	This contact was not mentioned in the original article	2

CIZPAF	3.44(4)	3.982(14)	35.76	0.847	Classified as Pt-π interactions	22
DIFHIM	3.792(2)	4.577	43.69	0.934	This contact was not mentioned in the original article	23
KISYER	3.274(7)	4.128	14.764	0.806	This contact was not mentioned in the original article	24

LURFAI	3.963(11)	4.238(4)	20.49	0.976	This contact was not mentioned in the original article	25
SAXVAP	3.542(4)	4.029	33.115	0.872	This contact was not mentioned in the original article	26
ULAYAJ	3.665(13)	4.297	38.079	0.903	This contact was not mentioned in the original article	27

UWIBIN	3.905(3)	4.326	28.387	0.962	Classified as Pt-Pt and/or π-π interactions	11
VALVUD	3.512(5)	3.3755(17)	6.81(12)	0.865	This contact was not mentioned in the original article	28

VALWAK	3.551(7)	3.340(2)	6.54	0.875	This contact was not mentioned in the original article	28
М	= Pd					
KAHLUC	3.289(5)	3.991	13.351	0.839	This contact was not mentioned in the original article	29
KISXOA	3.389(5)	3.318(2)	16.58	0.865	This contact was not mentioned in the original article	24

	DEFRUE01	3.403(6)	3.745	25.58	0.832	Classified as π- hole…Au intercations	30
The state of the s	DEFSEP	3.404(13)	3.683	22.47	0.832	Classified as π - holeAu intercations	30
A A A A	OLIKUQ	3.346(6)	3.673(2)	24.59	0.818	This contact was not mentioned in the original article	31
Hand to	TEDSID	3.501(11)	3.496(4)	12.11	0.856	Classified by the authors as Au– π interactions, π - π stacking	32

A for the second of the second	TUDCEB	3.329(4)	3.7196(17)	28.75	0.814	These contacts were not mentioned in the original article	33
to the	WUHJUH	3.603(5)	3.818	22.1	0.881	These contacts were not mentioned in the original article	34
	WUHKAO	3.606(5)	3.796	21.03	0.882	These contacts were not mentioned in the original article	34
A start	WUHKES	3.609(12)	3.817	21.84	0.882	These contacts were not mentioned in the original article	34

	WUHKUI	3.578(10)	3.797	21.16	0.875	These contacts were not mentioned in the original article	34
	M	= Cu					
A Contraction of the second se	TUDCAX	3.688(9)	3.621(4)	9.09	0.889	These contacts were not mentioned in the original article	33
	C 1	AT C IN					
	Group 3	$(N-C\cdots M)$					

BOJKIX	3.537(9)	-	88.0	0.871	Classified as π- hole…Pt ^{II} interactions	35
KEJGUE	3.573(14)	-	85.5	0.880	These contacts were not mentioned in the original article; no π - π interactions observed; classified by the authors as C-H- π or C-H-Pt interactions	36
М	= Pd					

the states	BOJJIW	3.527(3)	-	90.23°	0.900	Classified as π - hole…Pd ^{II} interactions	35
	M =	= Au					1
	BESYOQ	3.729(17)	-	100.1	0.912	This contact was not mentioned in the original article	37

	CAVMUI01	3.489(19)	-	71.1	0.853	This contact	38
						was not	
XXXX						mentioned	
XX						in the	
I. R MAL						original	
It is a						article	
XXX							
A A A A A A A A A A A A A A A A A A A							
XXX A							
•	HUDMEY	3.644(15)	-	92.1	0.891	These	39
1	HUDMEY	3.644(15)	-	92.1	0.891	These contacts	39
	HUDMEY	3.644(15)	-	92.1	0.891	These contacts were not	39
	HUDMEY	3.644(15)	-	92.1	0.891	These contacts were not mentioned	39
	HUDMEY	3.644(15)	_	92.1	0.891	These contacts were not mentioned in the	39
	HUDMEY	3.644(15)	-	92.1	0.891	These contacts were not mentioned in the original article	39
	HUDMEY	3.644(15)	_	92.1	0.891	These contacts were not mentioned in the original article	39
	HUDMEY	3.644(15)	_	92.1	0.891	These contacts were not mentioned in the original article	39
	HUDMEY	3.644(15)	-	92.1	0.891	These contacts were not mentioned in the original article	39
	HUDMEY	3.644(15)	_	92.1	0.891	These contacts were not mentioned in the original article	39

L.	XORGES	3.556(10)	-	89.2	0.869	Classified	40
×						as π - π	
A A A A A A A A A A A A A A A A A A A						interactions	
AL TO							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
A Mailan H							
Y II							
X X							
A .							

- 1. C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, The Cambridge Structural Database, *Acta Crystallographica Section B*, 2016, **72**, 171-179.
- 2. C.-M. Che, Y.-J. Hou, M. C. W. Chan, J. Guo, Y. Liu and Y. Wang, [meso-Tetrakis(pentafluorophenyl)porphyrinato]platinum(ii) as an efficient, oxidation-resistant red phosphor: spectroscopic properties and applications in organic light-emitting diodes, *J. Mater. Chem.*, 2003, **13**, 1362-1366.
- 3. L. E. Zelenkov, A. A. Eliseeva, S. V. Baykov, D. M. Ivanov, A. I. Sumina, R. M. Gomila, A. Frontera, V. Y. Kukushkin and N. A. Bokach, Inorganic– organic {dz2-MIIS4}…π-hole stacking in reverse sandwich structures: the case of cocrystals of group 10 metal dithiocarbamates with electron-deficient arenes, *Inorganic Chemistry Frontiers*, 2022, **9**, 2869-2879.
- 4. T. Kusamoto, K. Takada, R. Sakamoto, S. Kume and H. Nishihara, Ferrocene–Dithiolene Hybrids: Control of Strong Donor–Acceptor Electronic Communication to Reverse the Charge Transfer Direction, *Inorganic Chemistry*, 2012, **51**, 12102-12113.
- 5. V. Sivchik, A. Kochetov, T. Eskelinen, K. S. Kisel, A. I. Solomatina, E. V. Grachova, S. P. Tunik, P. Hirva and I. O. Koshevoy, Modulation of Metallophilic and π - π Interactions in Platinum Cyclometalated Luminophores with Halogen Bonding, *Chemistry A European Journal*, 2021, **27**, 1787-1794.
- 6. V. Sivchik, R. K. Sarker, Z.-Y. Liu, K.-Y. Chung, E. V. Grachova, A. J. Karttunen, P.-T. Chou and I. O. Koshevoy, Improvement of the Photophysical Performance of Platinum-Cyclometalated Complexes in Halogen-Bonded Adducts, *Chem. Eur. J.*, 2018, **24**, 11475-11484.
- 7. V. V. Sivchik, A. I. Solomatina, Y.-T. Chen, A. J. Karttunen, S. P. Tunik, P.-T. Chou and I. O. Koshevoy, Halogen Bonding to Amplify Luminescence: A Case Study Using a Platinum Cyclometalated Complex, *Angewandte Chemie International Edition*, 2015, **54**, 14057-14060.
- 8. B. W. Smucker, J. M. Hudson, M. A. Omary and K. R. Dunbar, Structural, Magnetic, and Optoelectronic Properties of (Diimine)(dithiolato)platinum(II) and -palladium(II) Complexes and Their Charge-Transfer Adducts with Nitrile Acceptors, *Inorganic Chemistry*, 2003, **42**, 4714-4723.
- 9. A. V. Rozhkov, I. V. Ananyev, R. M. Gomila, A. Frontera and V. Y. Kukushkin, π-Hole…dz2[PtII] Interactions with Electron-Deficient Arenes Enhance the Phosphorescence of PtII-Based Luminophores, *Inorganic Chemistry*, 2020, **59**, 9308-9314.
- A. V. Rozhkov, M. A. Krykova, D. M. Ivanov, A. S. Novikov, A. A. Sinelshchikova, M. V. Volostnykh, M. A. Konovalov, M. S. Grigoriev, Y. G. Gorbunova and V. Y. Kukushkin, Reverse Arene Sandwich Structures Based upon π-Hole…[MII] (d8 M=Pt, Pd) Interactions, where Positively Charged Metal Centers Play the Role of a Nucleophile, *Angew. Chem. Int. Ed.*, 2019, **58**, 4164-4168.

- 11. S. A. Katkova, K. V. Luzyanin, A. S. Novikov and M. A. Kinzhalov, Modulation of luminescence properties for [cyclometalated]-PtII(isocyanide) complexes upon co-crystallisation with halosubstituted perfluorinated arenes, *New Journal of Chemistry*, 2021, **45**, 2948-2952.
- 12. Y. V. Torubaev, I. V. Skabitsky, A. V. Rozhkov, B. Galmés, A. Frontera and V. Y. Kukushkin, Highly polar stacking interactions wrap inorganics in organics: lone-pair–π-hole interactions between the PdO4 core and electron-deficient arenes, *Inorganic Chemistry Frontiers*, 2021, **8**, 4965-4975.
- 13. O. Elbjeirami, M. D. Rashdan, V. Nesterov and M. A. Rawashdeh-Omary, Structure and luminescence properties of a well-known macrometallocyclic trinuclear Au(i) complex and its adduct with a perfluorinated fluorophore showing cooperative anisotropic supramolecular interactions, *Dalton Transactions*, 2010, **39**, 9465-9468.
- 14. M. A. Rawashdeh-Omary, M. A. Omary, J. P. Fackler, R. Galassi, B. R. Pietroni and A. Burini, Chemistry and Optoelectronic Properties of Stacked Supramolecular Entities of Trinuclear Gold(I) Complexes Sandwiching Small Organic Acids, *Journal of the American Chemical Society*, 2001, **123**, 9689-9691.
- 15. A. A. Mohamed, M. A. Rawashdeh-Omary, M. A. Omary and J. J. P. Fackler, External heavy-atom effect of gold in a supramolecular acid–base π stack, *Dalton Trans.*, 2005, **15**, 2597-2602.
- Z. M. Efimenko, A. A. Eliseeva, D. M. Ivanov, B. Galmés, A. Frontera, N. A. Bokach and V. Y. Kukushkin, Bifurcated μ2-I···(N,O) Halogen Bonding: The Case of (Nitrosoguanidinate)NiII Cocrystals with Iodine(I)-Based σ-Hole Donors, *Crystal Growth & Design*, 2021, 21, 588-596.
- 17. D. Blasi, V. Nicolai, R. M. Gomila, P. Mercandelli, A. Frontera and L. Carlucci, Unprecedented {dz2-CuIIO4}…π-hole interactions: the case of a cocrystal of a Cu(ii) bis-β-diketonate complex with 1,4-diiodotetrafluoro-benzene, *Chemical Communications*, 2022, **58**, 9524-9527.
- 18. B. A. Suslick, A. L. Liberman-Martin, T. C. Wambach and T. D. Tilley, Olefin Hydroarylation Catalyzed by (pyridyl-indolate)Pt(II) Complexes: Catalytic Efficiencies and Mechanistic Aspects, *ACS Catalysis*, 2017, 7, 4313-4322.
- 19. P. Pushpanandan, Y. K. Maurya, T. Omagari, R. Hirosawa, M. Ishida, S. Mori, Y. Yasutake, S. Fukatsu, J. Mack, T. Nyokong and H. Furuta, Singly and Doubly N-Confused Calix[4]phyrin Organoplatinum(II) Complexes as Near-IR Triplet Sensitizers, *Inorganic Chemistry*, 2017, **56**, 12572-12580.
- 20. V. Phillips, K. J. Willard, J. A. Golen, C. J. Moore, A. L. Rheingold and L. H. Doerrer, Electronic Influences on Metallophilic Interactions in [Pt(tpy)X][Au(C6F5)2] Double Salts, *Inorganic Chemistry*, 2010, **49**, 9265-9274.
- 21. M. Crespo, M. Font-Bardía and X. Solans, Formation and cleavage of platinacycles containing a fluorinated imine. Crystal structure of [PtMe(3,4,5-C6HF3CH NCH2C6H5)PPh3], *Polyhedron*, 2002, **21**, 105-113.
- 22. S. Wilde, L. Stegemann, C. G. Daniliuc, T. Koch, N. L. Doltsinis and C. A. Strassert, Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation, *Zeitschrift für Naturforschung B*, 2018, **73**, 849-863.
- 23. D. Suter, L. T. C. G. van Summeren, O. Blacque and K. Venkatesan, Highly Stable and Strongly Emitting N-Heterocyclic Carbene Platinum(II) Biaryl Complexes, *Inorganic Chemistry*, 2018, **57**, 8160-8168.
- 24. Y. Tanaka, S. Saito, S. Mori, N. Aratani, H. Shinokubo, N. Shibata, Y. Higuchi, Z. S. Yoon, K. S. Kim, S. B. Noh, J. K. Park, D. Kim and A. Osuka, Metalation of Expanded Porphyrins: A Chemical Trigger Used To Produce Molecular Twisting and Möbius Aromaticity, *Angewandte Chemie International Edition*, 2008, **47**, 681-684.
- 25. Y. Wang, K. Ogasahara, D. Tomihama, R. Mysliborski, M. Ishida, Y. Hong, Y. Notsuka, Y. Yamaoka, T. Murayama, A. Muranaka, M. Uchiyama, S. Mori, Y. Yasutake, S. Fukatsu, D. Kim and H. Furuta, Near-Infrared-III-Absorbing and -Emitting Dyes: Energy-Gap Engineering of Expanded Porphyrinoids via Metallation, *Angewandte Chemie International Edition*, 2020, **59**, 16161-16166.

- 26. F. Zhang, C. W. Kirby, D. W. Hairsine, M. C. Jennings and R. J. Puddephatt, Activation of C-H Bonds of Arenes: Selectivity and Reactivity in Bis(pyridyl) Platinum(II) Complexes, *Journal of the American Chemical Society*, 2005, **127**, 14196-14197.
- 27. A. L. Liberman-Martin, D. S. Levine, W. Liu, R. G. Bergman and T. D. Tilley, Biaryl Reductive Elimination Is Dramatically Accelerated by Remote Lewis Acid Binding to a 2,2'-Bipyrimidyl–Platinum Complex: Evidence for a Bidentate Ligand Dissociation Mechanism, *Organometallics*, 2016, **35**, 1064-1069.
- 28. A. V. Rozhkov, E. A. Katlenok, M. V. Zhmykhova, A. Y. Ivanov, M. L. Kuznetsov, N. A. Bokach and V. Y. Kukushkin, Metal-Involving Chalcogen Bond. The Case of Platinum(II) Interaction with Se/Te-Based σ-Hole Donors, *Journal of the American Chemical Society*, 2021, **143**, 15701-15710.
- 29. T. Tanaka, T. Sugita, S. Tokuji, S. Saito and A. Osuka, Metal Complexes of Chiral Möbius Aromatic [28]Hexaphyrin(1.1.1.1.1): Enantiomeric Separation, Absolute Stereochemistry, and Asymmetric Synthesis, *Angewandte Chemie International Edition*, 2010, **49**, 6619-6621.
- 30. T. Seki, K. Kashiyama, S. Yagai and H. Ito, Tuning the Lifetime of Transient Phases of Mechanochromic Gold Isocyanide Complexes through Functionalization of the Terminal Moieties of Flexible Side Chains, *Chemistry Letters*, 2017, **46**, 1415-1418.
- 31. J. Coetzee, S. Cronje, L. Dobrzańska, H. G. Raubenheimer, G. Jooné, M. J. Nell and H. C. Hoppe, Novel N-heterocyclic ylideneamine gold(i) complexes: synthesis, characterisation and screening for antitumour and antimalarial activity, *Dalton Transactions*, 2011, **40**, 1471-1483.
- 32. T. Seki, K. Ida and H. Ito, A meta-diisocyanide benzene-based aryl gold isocyanide complex exhibiting multiple solid-state molecular arrangements and luminescent mechanochromism, *Materials Chemistry Frontiers*, 2018, **2**, 1195-1200.
- 33. E. J. Fernández, A. Laguna, J. M. López-de-Luzuriaga, M. Monge, M. Montiel, M. E. Olmos and M. Rodríguez-Castillo, Unsupported Au(i)…Cu(i) interactions: influence of nitrile ligands and aurophilicity on the structure and luminescence, *Dalton Transactions*, 2009, **36**, 7509-7518.
- 34. T. Seki, K. Ida, H. Sato, S. Aono, S. Sakaki and H. Ito, Aurophilicity-Mediated Construction of Emissive Porous Molecular Crystals as Versatile Hosts for Liquid and Solid Guests, *Chemistry A European Journal*, 2020, **26**, 735-744.
- 35. S. A. Katkova, A. S. Mikherdov, M. A. Kinzhalov, A. S. Novikov, A. A. Zolotarev, V. P. Boyarskiy and V. Y. Kukushkin, (Isocyano Group π-Hole)…[d -MII] Interactions of (Isocyanide)[MII] Complexes, in which Positively Charged Metal Centers (d8-M=Pt, Pd) Act as Nucleophiles, *Chemistry – A European Journal*, 2019, 25, 8590-8598.
- 36. H. R. Shahsavari, R. Babadi Aghakhanpour, M. Hossein-Abadi, M. Golbon Haghighi, B. Notash and M. Fereidoonnezhad, A new approach to the effects of isocyanide (CN-R) ligands on the luminescence properties of cycloplatinated(ii) complexes, *New Journal of Chemistry*, 2017, **41**, 15347-15356.
- 37. M. Fereidoonnezhad, H. R. Shahsavari, E. Lotfi, M. Babaghasabha, M. Fakhri, Z. Faghih, Z. Faghih and M. Hassan Beyzavi, (Benzyl isocyanide)gold(I) pyrimidine-2-thiolate complex: Synthesis and biological activity, *Applied Organometallic Chemistry*, 2018, **32**, e4200.
- E. M. Gussenhoven, J. C. Fettinger, D. M. Pham, M. M. Malwitz and A. L. Balch, A Reversible Polymorphic Phase Change Which Affects the Luminescence and Aurophilic Interactions in the Gold(I) Cluster Complex, [μ3-S(AuCNC7H13)3](SbF6), *Journal of the American Chemical Society*, 2005, 127, 10838-10839.
- 39. D. Lentz and S. Willemsen, Transition metal complexes of 2,2,2-trifluoroethyl isocyanide and 1H,1H-perfluorooctyl isocyanide, *Journal of Organometallic Chemistry*, 2000, **612**, 96-105.
- 40. Y. Sakamoto, T. Moriuchi and T. Hirao, Organogold(I)-uracil conjugates: Synthesis and structural characterization, *Journal of Organometallic Chemistry*, 2015, **782**, 77-81.

3. Computational details

3.1. Geometry

The optimization of [1·OFA·1] led to a negligible geometry distortion: the distance $Q_{Pt(A)}$ was reduced, while the $Q_{Pt(C)}$ separations increased by 0.1 Å (for $Q_{Pt(A)}$) and 0.5 Å (for $Q_{Pt(C)}$) (**Figure S5**). A similar trend was also verified for the distances, which reflect the π - π stacking between cyclometalated ligands and perfluoroarenes. Indeed, the distance between the centroids of the naphthyl fragment in complex **A** and the perfluoroarene decreases (by 0.2 Å), while the separation between- the benzothiazole fragment in complex **C** and the perfluoroarene increases (by 0.2 Å) (**Table S3**). Notably, when the optimization was performed for [1·OFA], OFA undergoes the greatest distortion of the molecular plane: two planes involving the terminal aromatic rings intersect along the central C–C direction with the torsion angle 17.6° (**Figure S7**).

The geometry parameters of the [1·OFA·1] most closely matched the geometry of the Xray structure. The optimized geometry for [1·C₆F₆·1] exhibits a shift of the perfluoroarene toward the naphthyl fragment, as follows from an increased Q_{Pt} distance (by 0.1 Å) and π - π stacking (by 0.3 Å) between the naphthyl fragments and the C₆F₆ fragment. Considering the optimized geometries of the bimolecular and trimolecular models, it can be concluded that, in general, the geometries are similar (**Figure S6**). However, a comparison of the geometry of the bimolecular and trimolecular models with X-ray diffraction analysis shows that the geometry in the binuclear model agrees best with the experimental geometry. Finally, in the optimized structure of **2**·C₆F₆, we did not observe significant changes in the geometric position of the perfluoroarene in both the bimolecular and trimolecular models. Thus, the optimized structures of the trinuclear for (1–2)·Ar^F are in a good agreement with the geometry obtained from the XRD experiments.

Figure S6. Overlayed images of $[1 \cdot OFA \cdot 1]$ (a), $[1 \cdot C_6F_6 \cdot 1]$ (b), $[2 \cdot C_6F_6 \cdot 2]$ (c) in X-ray (green) and optimized (purple) geometries (hydrogen atoms were omitted for the sake of simplicity).

Figure S7. Overlayed images of $[1 \cdot OFA \cdot 1]$ (a), $[1 \cdot C_6F_6 \cdot 1]$ (b), and $[2 \cdot C_6F_6 \cdot 2]$ (c) in trimolecular (blue) and bimolecular (red) optimized geometries (hydrogen atoms were omitted for the sake of simplicity).

Figure S8. X-ray (a) and optimized structures (b) of OFA.

	$\begin{array}{c c} Pt(A, B) \cdots Cg1, \\ \mathring{A} \end{array}$	M…C, Å	Q _{Pt} , Å	π-π, Å
[1·OFA·1] (X-ray)	3.805	3.755	3.653	3.548* 3.548**
[1·OFA·1]	3.817 3.852	3.474 3.487	3.507 3.520	3.309* 3.720**
[1·OFA]	4.163	3.727	3.501	3.327* 3.323**
$[1 \cdot C_6 F_6 \cdot 1] (X - ray)$	3.996 3.996	3.642 3.642	3.412	3.695* 3.695*
$[1 \cdot \mathbf{C}_6 \mathbf{F}_6 \cdot 1]$	4.301 4.289	3.541 3.548	3.296 3.206	3.387* 3.374*
$[1 \cdot \mathbf{C}_6 \mathbf{F}_6].$	3.747	3.354	3.231	3.501*
$[2 \cdot \mathbf{C}_6 \mathbf{F}_6 \cdot 2] (X \text{-ray})$	3.843 3.843	3.351	3.6122	3.458** 3.457**
[2 ·C ₆ F ₆ · 2]	3.682 3.682	3.357 3.364	3.305 3.294	3.520** 3.516**
$[2 \cdot \mathbf{C}_6 \mathbf{F}_6]$	3.668	3.346	3.264	3.553**

Table S3. Intermolecular distances of optimized and X-ray structures for the trimolecular and bimolecular models $[(1/2)\cdot Ar^F]$

* – the distance between the centroids of the naphthyl fragment of the C^N ligand and Ar^F

** – the distance between the centroids of the benzothiazole fragment of the C^N ligand and Ar^F

3.2. QTAIM

Figure S9. QTAIM distribution of bond critical points (red) and bond paths for (a) [1·OFA·1]; (b) $[1 \cdot C_6 F_6 \cdot 1]$; (c) $[2 \cdot C_6 F_6 \cdot 2]$; (d) $[1 \cdot OFA]$; (e) $[1 \cdot C_6 F_6]$; (f) $[2 \cdot C_6 F_6]$.

Table S4. Electron density (ρ_b), its Laplacian ($\nabla^2 \rho_b$), potential and kinetic energy densities (V_b and G_b), second eigenvalue of the Hessian matrix (λ_2), elliptical bond index (ϵ), electron localization function at BCPs (in a.u.) calculated at the PBE0-D3BJ/ZORA-def2-TZVP level of theory.

Contact	Clusters	$ ho_b$	$\nabla^2 \rho_b$	V _b	$\mathbf{G}_{\mathbf{b}}$	Н	3	λ_2	ELF
C…Pt	[1·OFA·1]	0.0084	0.0211	-0.0040	0.0047	0.0006	2.18	-0.0014	0.04
C…Pt	[1·OFA]	0.0076	0.0210	-0.0036	0.0045	0.0008	8.1	-0.0003	0.03
C…Pt	$[1 \cdot \mathbf{C}_6 \mathbf{F}_6]$	0.0122	0.0305	-0.0066	0.0071	0.0005	1.30	-0.0032	0.06
C…Pt	$[2 \cdot C_6 F_6 \cdot 2]$	0.0128	0.0317	-0.0069	0.0074	0.0005	1.34	-0.0035	0.067
C…Pt	$[2 \cdot C_6 F_6]$	0.0128	0.0318	-0.0069	0.0074	0.0005	1.47	-0.0033	0.07
$C \cdots C^{naph}$	[1 ·OTA· 1]	0.0082	0.0245	-0.0040	0.0051	0.0011	1.06	-0.0019	0.03
$C \cdots C^{naph}$	[1 ·OTA· 1]	0.0073	0.0232	-0.0035	0.0047	0.0011	5.99	-0.0006	0.03
$C \cdots C^{naph}$	[1 ·OTA]	0.0081	0.0254	-0.0041	0.0052	0.0011	3.15	-0.0012	0.03
$C \cdots C^{naph}$	[1·OTA]	0.0084	0.0267	-0.0043	0.0055	0.0012	0.66	-0.0021	0.03
$C \cdots C^{naph}$	$[1 \cdot \mathbf{C}_6 \mathbf{F}_6 \cdot 1]$	0.0098	0.0309	-0.0053	0.0065	0.0012	0.11	-0.0029	0.04
$C \cdots C^{naph}$	$[1 \cdot \mathbf{C}_6 \mathbf{F}_6 \cdot 1]$	0.0083	0.0263	-0.0043	0.0055	0.0011	0.80	-0.0017	0.03
$C \cdots C^{naph}$	$[1 \cdot \mathbf{C}_6 \mathbf{F}_6 \cdot 1]$	0.0090	0.0290	-0.0047	0.0060	0.0013	2.17	-0.0015	0.03
$C \cdots C^{naph}$	$[1 \cdot \mathbf{C}_6 \mathbf{F}_6]$	0.0082	0.0256	-0.0042	0.0053	0.0011	0.84	-0.0018	0.03
$C \cdots C^{naph}$	$[1 \cdot \mathbf{C}_6 \mathbf{F}_6]$	0.0090	0.0281	-0.0047	0.0059	0.0012	1.49	-0.0020	0.04
$C \cdots C^{ph}$	$[2 \cdot C_6 F_6 \cdot 2]$	0.0082	0.0245	-0.0040	0.0050	0.0011	0.37	-0.0024	0.03
$C \cdots C^{ph}$	$[2 \cdot C_6 F_6 \cdot 2]$	0.0091	0.0282	-0.0047	0.0059	0.0012	0.99	-0.0024	0.036
$C \cdots C^{ph}$	$[2 \cdot C_6 F_6]$	0.0081	0.0246	-0.0040	0.0050	0.0011	0.19	-0.0025	0.033
$C \cdots C^{ph}$	$[2 \cdot C_6 F_6]$	0.0089	0.0280	-0.0046	0.0058	0.0012	0.76	-0.0025	0.034
C…C ^{bt}	[1 ·OTA· 1]	0.0081	0.0253	-0.0041	0.0052	0.0011	9.30	-0.0004	0.02
C…C ^{bt}	[1 ·OTA· 1]	0.0093	0.0297	-0.0050	0.0062	0.0012	2.56	-0.0014	0.03
C····C ^{bt}	[1·OTA]	0.0090	0.0273	-0.0046	0.0057	0.0011	3.12	-0.0013	0.04
C····C ^{bt}	[1·OTA]	0.0083	0.0259	-0.0041	0.0053	0.0012	9.71	-0.0005	0.03

Figure S10 ETS–NOCV deformation densities for $[1 \cdot C_6 F_6]$ (isovalues 0.0005 a.u., electrons transfer occurs from the decreased electron density regions (blue) to the increased electron density regions (red)).

Figure S11 ETS–NOCV deformation densities for $[2 \cdot C_6 F_6 \cdot 2]$ (isovalues 0.0005 a.u., electrons transfer occurs from the decreased electron density regions (blue) to the increased electron density regions (red), the second molecule of the Pt complex in trimolecular clusters was omitted for clarity).

Figure S12. EDD contour plot (red – charge concentration, blue – charge depletion, range – 0.01 to 0.01 a.u., step 0.0005 a.u.) and CDF functions for the C···Pt interaction in $[1 \cdot C_6F_6]$ (black dots indicate positions of the atomic nuclei, grey vertical lines identify the boundaries between the C, Pt2 and Pt1 atoms, which are placed along the *z* axis).

Figure S13. EDD contour plot (red – charge concentration, blue – charge depletion, range – 0.01 to 0.01 a.u., step 0.0005 a.u.) and CDF functions for the C···Pt interaction in $[2 \cdot C_6 F_6 \cdot 2]$ (black dots indicate positions of the atomic nuclei, grey vertical lines identify the boundaries between the C, Pt2 and Pt1 atoms, which are placed along the *z* axis).

4. Cartesian coordinates for the studied molecules

Optimized geometries

Cartesian coordinates for $[1 \cdot OFA]$ (in Å)

Pt	-0.094091000	-2.812509000	7.307402000
Pt	-0.107045000	-2.997332000	10.148798000
S	0.005481000	-5.101961000	7.264754000
S	2.043004000	-2.214308000	10.165001000
S	-1.954629000	1.264629000	6.973936000
S	-4.584068000	-2.870447000	10.085239000
Ν	-0.392701000	-0.775295000	7.144832000
Ν	0.784886000	-4.920201000	9.868014000
Ν	2.045366000	-2.925517000	7.531670000
Ν	-2.098674000	-3.510484000	10.210675000
С	-0.913722000	-1.209027000	10.390965000
С	-2.629018000	-1.501984000	6.774885000
С	2.680193000	-3.303898000	6.405559000
Н	2.046434000	-3.481783000	5.540411000
С	-1.662614000	-0.445345000	6.918087000
С	-2.901012000	-2.453065000	10.136993000
С	-2.308528000	-1.141327000	10.196580000
С	0.410030000	0.318053000	7.399318000
С	1.777910000	0.326772000	7.692560000
Н	2.336930000	-0.599390000	7.692233000
С	-4.032999000	-1.335523000	6.514627000
С	-4.265332000	-3.762316000	6.808724000
Н	-4.906658000	-4.643505000	6.840515000
С	-0.222108000	0.000452000	10.656942000
Н	0.851462000	-0.027635000	10.829552000
С	1.344106000	-6.932038000	8.705880000
Н	1.316728000	-7.491395000	7.773661000
С	-2.048170000	-2.770539000	6.988950000
С	2.398169000	1.537326000	7.969531000
Н	3.460959000	1.544271000	8.201813000
С	-4.862122000	-2.498481000	6.560421000
С	2.759917000	-2.719576000	8.662171000
С	-0.288148000	1.542787000	7.356983000
С	4.053095000	-3.431979000	6.316060000
Н	4.505246000	-3.712541000	5.368854000
С	1.410309000	-5.409489000	10.956510000
Н	1.417743000	-4.747701000	11.820321000
С	-2.234351000	-6.000496000	10.278467000
Н	-1.162583000	-6.135565000	10.358331000
С	-2.775811000	-4.710624000	10.212488000
С	1.989537000	-6.661834000	10.999688000
Н	2.467740000	-7.010329000	11.911147000
С	-2.914846000	-3.896643000	7.002244000
Н	-2.495058000	-4.883575000	7.183696000
С	4.165453000	-2.840370000	8.634698000
Н	4.712754000	-2.672555000	9.559320000

С	-2.256574000	1.304981000	10.351185000
С	-2.998402000	0.111770000	10.084422000
С	-0.878005000	1.205331000	10.674846000
Н	-0.327849000	2.121743000	10.889717000
С	0.332752000	2.761374000	7.625980000
Н	-0.228273000	3.692784000	7.585282000
С	4.812903000	-3.183086000	7.463073000
Н	5.898304000	-3.273035000	7.444419000
С	-3.092226000	-7.090660000	10.240707000
Н	-2.673930000	-8.094592000	10.284086000
С	1.941052000	-7.445613000	9.838484000
Н	2.386011000	-8.439572000	9.819597000
С	-2.883903000	2.566812000	10.226525000
Н	-2.298029000	3.459927000	10.443957000
С	1.686691000	2.746415000	7.940702000
Н	2.199747000	3.682089000	8.153926000
С	0.766077000	-5.641551000	8.726541000
C	-4.193289000	2.672082000	9.812500000
н	-4 662205000	3 648729000	9 704627000
C	-4 917296000	1 502446000	9 509292000
н	-5 939398000	1.574855000	9 141041000
C	-6 255196000	-2 383531000	6 345448000
н	-6 861665000	-3 287784000	6 390240000
n C	-4 657513000	-0 105844000	6 190465000
ч	4.070998000	0.797631000	6.057818000
n C	4.338597000	0.757073000	0.037818000
ч	4.921138000	0.237975000	9.049039000
n C	-4.921138000	-0.009379000	9.552015000
c	-4.170140000	-4.330824000	5 080208000
U U	-0.017049000	-0.021233000	5.980298000
п	-0.437232000	1 164774000	5.721754000
U U	-0.834313000	-1.104//4000	5.006261000
п	-7.907147000	-1.080/22000	3.900201000
U U	-4.482348000	-0.924048000	10.14/902000
п	-5.132125000	-7.796819000	10.11/041000
	-5.039121000	-5.651084000	10.103013000
H F	-6.116492000	-5.509678000	10.040399000
F F	-4.199047000	-0.634163000	3.2398/9000
F T	-0.339525000	-4.3052/5000	4.13/565000
F	-2.884374000	-5.012596000	4.025604000
F	-4.802244000	-3.189315000	3.535898000
0	-2.360997000	1.221383000	3.160880000
С	-0.877603000	-2.024040000	3.778399000
С	-1.885208000	-1.056638000	3.568571000
С	-1.552439000	0.389879000	3.513497000
С	-1.222201000	-3.367358000	3.908110000
С	-3.215613000	-1.466875000	3.457003000
С	-3.548812000	-2.813779000	3.607911000
С	-2.560190000	-3.756229000	3.849931000
F	3.070585000	-0.668542000	4.739398000
F	-0.783498000	3.067847000	4.139927000
F	1.652147000	3.745991000	4.884188000
F	3.581157000	1.888439000	5.170174000

0	1.443326000	-2.428524000	3.652834000
С	-0.181928000	0.776538000	3.951855000
С	0.831073000	-0.196388000	4.105506000
С	0.548861000	-1.627781000	3.832965000
С	0.109427000	2.114776000	4.215342000
С	2.103582000	0.188458000	4.522847000
С	2.384385000	1.532398000	4.770939000
С	1.392009000	2.487516000	4.622403000

Cartesian coordinates for $[1 \cdot OFA \cdot 1]$ (in Å)

Pt	11.222619000	10.406770000	5.957781000
Pt	11.222619000	10.406770000	5.957781000
Pt	12.505623000	8.454051000	4.359637000
S	9.263949000	9.750751000	4.956199000
S	12.951942000	7.367750000	6.332962000
S	14.911361000	12.822603000	6.781062000
S	13.182817000	11.087452000	0.786725000
Ν	12.891623000	11.239346000	6.829242000
Ν	10.610524000	7.447849000	4.428498000
N	10.863189000	8.797448000	7.322421000
Ν	12.360893000	9.380546000	2.521455000
С	14.247746000	9.398143000	4.307550000
С	12.787337000	12.589679000	4.872013000
С	9.849982000	8.985770000	8.188457000
Н	9.243253000	9.874153000	8.019050000
С	13.454653000	12.191610000	6.087874000
С	13.373673000	10.205912000	2.270863000
С	14.460101000	10.265638000	3.215075000
С	13.583277000	10.970843000	7.992684000
С	13.241908000	10.072646000	9.011481000
Н	12.340115000	9.480460000	8.937915000
С	13.219088000	13.613748000	3.960045000
С	11.191893000	13.151644000	2.645211000
Н	10.569305000	13.376987000	1.779166000
С	15.243080000	9.346283000	5.318195000
Н	15.095116000	8.691293000	6.174152000
С	8.229692000	7.293757000	4.560483000
Η	7.285030000	7.802744000	4.736933000
С	11.597459000	11.860682000	4.666637000
С	14.052689000	9.989662000	10.133846000
Η	13.779690000	9.302720000	10.932945000
С	12.387239000	13.895396000	2.831111000
С	11.630657000	7.689264000	7.412144000
С	14.738678000	11.765976000	8.142315000
С	9.601440000	8.135294000	9.250051000
Η	8.802158000	8.364917000	9.948146000
С	10.657997000	6.121090000	4.206217000
Η	11.658090000	5.709110000	4.086571000
С	10.211879000	8.637893000	1.484366000
Η	9.997175000	7.907582000	2.253022000
С	11.383359000	9.403203000	1.547967000
С	9.530782000	5.327902000	4.115126000
Η	9.627406000	4.263324000	3.919517000
С	10.815315000	12.168039000	3.521492000
Н	9.903271000	11.603888000	3.338363000
С	11.411884000	6.771618000	8.462786000
Η	12.043585000	5.887928000	8.513813000
С	16.584211000	11.032173000	4.179786000
С	15.618808000	11.113602000	3.128313000

С	16.368476000	10.125575000	5.250827000
Η	17.115324000	10.072165000	6.043644000
С	15.548863000	11.691150000	9.274363000
Н	16.417025000	12.337992000	9.380123000
С	10.416380000	7.005239000	9.391177000
Н	10.258369000	6.305808000	10.211168000
С	9.341804000	8.824186000	0.419928000
Н	8.428467000	8.233768000	0.375842000
С	8.282717000	5.942128000	4.285604000
Н	7.364112000	5.360077000	4.223955000
С	17.726979000	11.865937000	4.160302000
Н	18.440474000	11.782942000	4.980034000
С	15.196961000	10.790313000	10.270782000
Н	15.802713000	10.719874000	11.171951000
С	9.419844000	8.051301000	4.642987000
С	17.937435000	12.763483000	3.137700000
Н	18.819737000	13.401381000	3.133126000
С	16.994695000	12.847631000	2.095767000
Н	17.140338000	13.562021000	1.287045000
С	12.759660000	14.902688000	1.911045000
Н	12.104644000	15.092802000	1.061008000
С	14.402238000	14.380141000	4.098122000
Н	15.091467000	14.198318000	4.915366000
С	15.871339000	12.047996000	2.093423000
Н	15.168093000	12.181844000	1.278523000
С	11.658564000	10.312095000	0.505378000
С	14.738875000	15.361085000	3.189965000
Н	15.662747000	15.919852000	3.330185000
С	13.914367000	15.632136000	2.082012000
Н	14.189575000	16.408458000	1.370038000
С	9.616028000	9.752657000	-0.595629000
Н	8.914256000	9.881644000	-1.417553000
С	10.785850000	10.501637000	-0.565775000
Н	11.019487000	11.213412000	-1.355346000
F	13.181529000	15.801956000	6.669147000
F	8.483642000	13.364194000	5.657623000
F	9.397897000	15.240610000	4.059724000
F	11.753027000	16.461706000	4.569378000
0	13.303857000	14.608604000	8.949960000
С	10.269910000	13.669833000	7.194341000
С	11.490846000	14.326370000	7.474399000
С	12.250293000	14.046483000	8.718020000
С	9.591772000	13.959435000	6.010779000
С	12.004454000	15.231413000	6.544789000
С	11.281313000	15.563595000	5.400184000
С	10.079106000	14.931438000	5.137352000
F	8.784356000	10.898295000	10.169398000
F	13.469975000	13.355050000	11.191446000
F	12.561257000	11.471722000	12.784856000
F	10.214560000	10.239471000	12.268650000
0	8.642324000	12.121877000	7.906340000
С	11.687802000	13.043134000	9.651059000

С	10.468854000	12.383534000	9.369058000
С	9.703882000	12.672062000	8.131067000
С	12.365731000	12.754324000	10.834948000
С	9.959219000	11.472864000	10.295303000
С	10.682637000	11.141337000	11.439888000
С	11.880915000	11.779285000	11.706211000
Pt	10.663842000	16.295449000	10.838208000
Pt	9.347270000	18.245252000	12.411774000
S	12.615038000	16.996062000	11.822810000
S	8.883222000	19.305697000	10.428887000
S	6.989616000	13.837705000	10.084678000
S	8.716723000	15.621497000	15.999600000
Ν	9.000244000	15.429486000	9.989552000
N	11.227689000	19.279188000	12.331902000
Ν	10.991721000	17.895595000	9.453465000
Ν	9.508879000	17.332595000	14.255302000
С	7.615569000	17.283039000	12.476899000
С	9.141390000	14.100338000	11.959288000
С	12.007981000	17.714533000	8.589436000
н	12.633089000	16.841871000	8.772650000
С	8.454408000	14.480611000	10.748255000
C	8.509024000	16.493490000	14.512282000
C	7.419039000	16.416783000	13.573296000
C	8.288382000	15.684359000	8.835333000
C	8.611786000	16.571604000	7.801206000
н	9.516455000	17.162221000	7.852102000
С	8.735485000	13.075730000	12.882585000
C	10.767853000	13,579715000	14.173810000
н	11 402063000	13 371276000	15.035637000
С	6.610519000	17.326203000	11.475625000
н	6.746780000	17.978815000	10.615947000
С	13.605542000	19.473661000	12,197105000
н	14 558793000	18 979629000	12 024367000
С	10.322317000	14.848425000	12.146581000
С	7.781460000	16.642839000	6.692504000
н	8 040214000	17 320892000	5 881226000
C	9 583166000	12 815207000	14 004864000
С	10.205770000	18,989525000	9.350191000
C	7 133160000	14 884750000	8 713058000
c	12 240867000	18 554638000	7 516126000
н	13 044384000	18 330241000	6 821162000
C	11 157587000	20.606876000	12 542966000
н	10 150643000	21.002609000	12.542900000
C	11 648412000	18 112808000	15 283762000
ч	11 849335000	18 843652000	14 511823000
n C	10.488004000	17 3280/2000	15 226324000
c	12 270814000	21 420312000	12 626402000
с н	12.270014000	21.720312000	12.020402000
п С	11 120101000	14 562521000	12.012730000
с н	12 02//82000	15 1/2751000	13 456049000
n C	10 40600000	10 806107000	8 786/20000
с н	9.750825000	20 767075000	8 2242429000
11	2.152625000	20.101913000	0.224042000

С	5.289017000	15.637300000	12.632222000
С	6.268062000	15.559646000	13.671375000
С	5.488543000	16.543316000	11.557699000
Н	4.732716000	16.592232000	10.773131000
С	6.302208000	14.948819000	7.595496000
Н	5.432707000	14.300566000	7.511476000
С	11.405076000	19.667426000	7.359859000
Н	11.549642000	20.357983000	6.529926000
С	12.524236000	17.943978000	16.346381000
Н	13.428451000	18.548593000	16.385781000
С	13.529280000	20.826448000	12.460251000
Н	14.437681000	21.424854000	12.516051000
С	4.150243000	14.798581000	12.665761000
Н	3.425330000	14.879835000	11.855929000
С	6.634682000	15.841176000	6.585084000
Н	6.011673000	15.903728000	5.695142000
С	12.428657000	18.694825000	12.121905000
С	3.958242000	13.897545000	13.688915000
Н	3.078995000	13.255614000	13.704246000
С	4.916749000	13.813874000	14.716452000
Н	4.786893000	13.095111000	15.523996000
С	9.236462000	11.808334000	14.935358000
Н	9.903067000	11.634498000	15.779860000
С	7.564259000	12.288394000	12.761046000
Н	6.865909000	12.450919000	11.947500000
С	6.035889000	14.619440000	14.705770000
Н	6.753217000	14.484217000	15.508176000
С	10.230087000	16.420547000	16.273484000
С	7.252408000	11.308842000	13.679558000
Н	6.337042000	10.733281000	13.551889000
С	8.091790000	11.059519000	14.781413000
Н	7.836479000	10.283782000	15.501384000
С	12.267036000	17.015311000	17.366236000
Н	12.973025000	16.900255000	18.186614000
С	11.108577000	16.248624000	17.342871000
Н	10.887956000	15.536672000	18.136015000

Cartesian coordinates for $[1 \cdot C_6 F_6]$ (in Å)

Pt	0.201293000	-0.425328000	7.187428000
S	-1.728753000	-0.498056000	10.153437000
S	0.615546000	-4.886000000	7.089617000
N	-0.180881000	-2.445801000	7.096969000
N	-1.762626000	0.327308000	7.560697000
С	-2.353705000	0.922349000	6.506946000
Η	-1.749662000	0.971657000	5.604239000
С	2.022310000	-1.102859000	6.812599000
С	-1.328553000	-3.197458000	7.235508000
С	2.177611000	-2.504473000	6.785666000
С	0.921820000	-3.183226000	6.990697000
С	3.449342000	-3.125845000	6.533758000
С	-3.643561000	1.415387000	6.545276000
Η	-4.077123000	1.872351000	5.659755000
С	4.570280000	-2.273805000	6.286705000
С	-2.650010000	-2.741759000	7.314011000
Н	-2.864219000	-1.683333000	7.246270000
С	-3.735660000	0.736083000	8.843814000
Н	-4.237575000	0.661878000	9.805630000
С	5.843930000	-2.832520000	6.029619000
Н	6.676832000	-2.154953000	5.842949000
С	-1.080856000	-4.584734000	7.270572000
С	-2.413343000	0.250152000	8.742677000
С	4.391738000	-0.866619000	6.316881000
Η	5.256243000	-0.229063000	6.129991000
С	-3.671716000	-3.667812000	7.462704000
Η	-4.699198000	-3.314678000	7.528384000
С	-3.407792000	-5.044822000	7.526704000
Η	-4.228668000	-5.749309000	7.647340000
С	3.171870000	-0.302267000	6.584425000
Η	3.079523000	0.781008000	6.622338000
С	-2.105786000	-5.517865000	7.422203000
Η	-1.889156000	-6.583985000	7.452372000
С	6.033374000	-4.195657000	6.013972000
Η	7.017566000	-4.616147000	5.814435000
С	-4.353111000	1.305498000	7.747998000
Η	-5.372617000	1.680468000	7.828244000
С	3.683914000	-4.522659000	6.508761000
Η	2.882411000	-5.225650000	6.706791000
С	4.935490000	-5.043083000	6.256934000
Η	5.071574000	-6.123435000	6.254153000
Pt	0.549241000	-0.274537000	9.990837000
S	0.814858000	1.782214000	7.105214000
S	4.856764000	-1.470565000	9.713849000
N	2.605996000	-0.258178000	9.964072000
N	0.143661000	1.814120000	9.739547000
С	-0.278211000	2.444567000	10.852046000
Η	-0.410025000	1.804561000	11.722205000
С	0.912614000	-2.204434000	10.236106000

С	3.540917000	0.746208000	9.821832000
С	2.257356000	-2.609023000	10.098121000
С	3.135556000	-1.478440000	9.933486000
С	2.643346000	-3.993699000	10.120452000
С	-0.514459000	3.804213000	10.909217000
Н	-0.839759000	4.262461000	11.839331000
С	1.626181000	-4.964562000	10.381007000
С	3.328686000	2.130413000	9.847858000
Н	2.334949000	2.524604000	10.016211000
С	0.063119000	3.904129000	8.583388000
Н	0.187702000	4.439604000	7.645135000
С	1.950965000	-6.341039000	10.412115000
Н	1.153843000	-7.055543000	10.617287000
С	4.854345000	0.261864000	9.652299000
С	0.289263000	2.509183000	8.589837000
С	0.286421000	-4.532354000	10.562202000
Н	-0.480280000	-5.284389000	10.751572000
С	4.409626000	2.980893000	9.665953000
Н	4.243299000	4.056493000	9.679171000
С	5.706644000	2.483418000	9.467989000
Н	6.536156000	3.173019000	9.322969000
С	-0.062125000	-3.209648000	10.467863000
Н	-1.107942000	-2.924094000	10.559032000
С	5.942554000	1.114138000	9.468653000
Н	6.945893000	0.714986000	9.332457000
С	3.236203000	-6.775327000	10.177051000
Н	3.474843000	-7.837376000	10.198845000
С	-0.324377000	4.551492000	9.739048000
Н	-0.498637000	5.626650000	9.731754000
С	3.950537000	-4.479825000	9.869754000
Η	4.756001000	-3.801647000	9.607734000
С	4.239436000	-5.828310000	9.895983000
Η	5.254413000	-6.158578000	9.680489000
F	2.332777000	-4.036938000	3.598858000
F	-0.314896000	-3.818404000	4.127045000
F	-1.460361000	-1.375853000	4.308226000
С	1.772981000	-2.848674000	3.666588000
С	0.410890000	-2.737029000	3.931672000
С	-0.178607000	-1.482903000	4.019764000
F	3.835727000	-1.805810000	3.273145000
F	2.692521000	0.637013000	3.509680000
F	0.038418000	0.851006000	3.980454000
С	2.545212000	-1.703408000	3.503682000
С	1.956052000	-0.447089000	3.610885000
С	0.593031000	-0.339029000	3.857384000

Cartesian coordinates for $[\mathbf{1} \cdot C_6 F_6 \cdot \mathbf{1}]$ (in Å)

Pt	1.920502000	1.585118000	-2.891887000
S	3.916939000	3.362873000	-5.235467000
S	4.321765000	-2.199537000	-3.170131000
N	3.446226000	0.194361000	-2.871340000
N	3.033055000	3.404460000	-2.661877000
С	2.964435000	3.954927000	-1.435432000
Н	2.345591000	3.417833000	-0.720187000
С	0.871651000	-0.088675000	-3.062063000
С	4.815398000	0.297524000	-2.757116000
С	1.607680000	-1.287740000	-3.166474000
С	3.026544000	-1.050545000	-3.081494000
С	0.965978000	-2.566791000	-3.304122000
С	3.656950000	5.094443000	-1.076278000
Η	3.579724000	5.472601000	-0.059480000
С	-0.463699000	-2.598103000	-3.307256000
С	5.571126000	1.445112000	-2.490974000
Η	5.075554000	2.393360000	-2.325554000
С	4.490421000	5.176869000	-3.324176000
Η	5.066848000	5.642866000	-4.120928000
С	-1.146632000	-3.829164000	-3.438675000
Η	-2.237174000	-3.817320000	-3.433243000
С	5.479100000	-0.935881000	-2.916223000
С	3.759171000	4.007147000	-3.629237000
С	-1.184348000	-1.379954000	-3.199793000
Η	-2.274706000	-1.418416000	-3.205018000
С	6.952789000	1.340197000	-2.428411000
Η	7.541681000	2.233507000	-2.224480000
С	7.602561000	0.110963000	-2.618960000
Η	8.689212000	0.057381000	-2.567164000
С	-0.544709000	-0.172367000	-3.099243000
Η	-1.131256000	0.743009000	-3.043109000
С	6.867653000	-1.043724000	-2.858598000
Η	7.358059000	-2.006744000	-2.993857000
С	-0.459078000	-5.014632000	-3.568282000
Η	-0.994368000	-5.958526000	-3.665923000
С	4.449666000	5.712439000	-2.051598000
Η	5.012580000	6.616970000	-1.820921000
С	1.637669000	-3.806172000	-3.439692000
Η	2.721357000	-3.853558000	-3.463311000
С	0.948394000	-4.993314000	-3.571874000
Η	1.506575000	-5.922398000	-3.684290000
Pt	2.003621000	2.156831000	-5.659013000
S	0.075121000	2.948771000	-2.763151000
S	-0.625070000	-1.345921000	-6.633502000
N	0.400833000	0.966520000	-6.190496000
N	0.966138000	3.971750000	-5.121543000
С	1.066203000	4.966790000	-6.023465000
Η	1.703169000	4.747818000	-6.879124000
С	2.954686000	0.480506000	-6.154075000

С	-0.961370000	1.177060000	-6.213591000
С	2.142259000	-0.644322000	-6.412448000
С	0.742273000	-0.302807000	-6.400605000
С	2.698497000	-1.953243000	-6.622685000
С	0.407433000	6.174010000	-5.897406000
Н	0.514601000	6.936755000	-6.664981000
С	4.123029000	-2.077120000	-6.644538000
С	-1.647613000	2.389350000	-6.066868000
Η	-1.095877000	3.312507000	-5.939126000
С	-0.454438000	5.372911000	-3.807789000
Н	-1.030768000	5.495961000	-2.892870000
С	4.722608000	-3.343992000	-6.834502000
Η	5.811705000	-3.402450000	-6.848810000
С	-1.702131000	-0.003035000	-6.431662000
С	0.246106000	4.158671000	-3.993588000
С	4.921972000	-0.924518000	-6.425094000
Н	6.007507000	-1.036455000	-6.431521000
С	-3.034519000	2.386377000	-6.100864000
Н	-3.568123000	3.328417000	-5.981371000
С	-3.759023000	1.199268000	-6.287752000
Н	-4.847728000	1.224702000	-6.306646000
С	4.362552000	0.300341000	-6.168959000
Н	5.007624000	1.149033000	-5.948388000
С	-3.096006000	-0.009141000	-6.463712000
Н	-3.645658000	-0.935956000	-6.622242000
С	3.958130000	-4.479346000	-6.983871000
Н	4.429909000	-5.450816000	-7.127961000
С	-0.385608000	6.370305000	-4.758456000
Н	-0.925071000	7.305922000	-4.611013000
С	1.946452000	-3.144990000	-6.768231000
Н	0.862262000	-3.132086000	-6.712328000
С	2.555140000	-4.370720000	-6.941258000
Н	1.936637000	-5.263659000	-7.027556000
F	2.653615000	-3.299663000	-0.279104000
F	4.047470000	-0.986618000	-0.015250000
F	2.733556000	1.354858000	0.239717000
С	2.016885000	-2.156538000	-0.146477000
С	2.730644000	-0.971257000	-0.013526000
С	2.052955000	0.234590000	0.093362000
F	-0.048470000	-3.261979000	-0.221654000
F	-1.365048000	-0.899003000	-0.027245000
F	0.024811000	1.412203000	0.050748000
С	0.626225000	-2.135541000	-0.132550000
С	-0.048705000	-0.925501000	-0.032400000
С	0.667176000	0.260395000	0.052588000
Pt	0.865768000	1.688234000	3.158165000
S	-1.087040000	3.462728000	5.634691000
S	-1.339846000	-2.224469000	3.045215000
N	-0.595179000	0.235437000	3.029474000
N	-0.324836000	3.482116000	3.015462000
С	-0.325488000	4.029569000	1.785165000
Н	0.260661000	3.496428000	1.039763000

С	1.993663000	0.061975000	3.112146000
С	-1.973160000	0.277224000	3.018840000
С	1.320810000	-1.176272000	3.030373000
С	-0.108319000	-1.003204000	3.027660000
С	2.031301000	-2.420953000	2.911027000
С	-1.036524000	5.167097000	1.458060000
Н	-1.009968000	5.545430000	0.438856000
С	3.460550000	-2.377247000	2.927177000
С	-2.796062000	1.407689000	2.986948000
Η	-2.355632000	2.395375000	2.943053000
С	-1.750401000	5.257707000	3.744489000
Н	-2.284591000	5.726393000	4.568717000
С	4.209277000	-3.571173000	2.803910000
Н	5.297417000	-3.502250000	2.829240000
С	-2.567622000	-1.000976000	3.037758000
С	-1.004209000	4.087991000	4.016188000
С	4.114261000	-1.126319000	3.075942000
Н	5.204957000	-1.109574000	3.102992000
С	-4.173067000	1.237661000	3.001209000
Н	-4.814112000	2.118010000	2.979678000
С	-4.751655000	-0.039966000	3.039093000
Н	-5.835713000	-0.145189000	3.050495000
С	3.411784000	0.046321000	3.163511000
Н	3.946989000	0.987518000	3.273676000
С	-3.949915000	-1.175380000	3.051734000
Н	-4.384971000	-2.173578000	3.073056000
С	3.588318000	-4.790047000	2.655596000
Н	4.174380000	-5.702916000	2.556250000
С	-1.776903000	5.789562000	2.470959000
Н	-2.350910000	6.693606000	2.267370000
С	1.428326000	-3.694494000	2.754430000
Н	0.349563000	-3.796644000	2.698495000
С	2.181712000	-4.842607000	2.629253000
Н	1.675909000	-5.798007000	2.492114000
Pt	0.774333000	2.154912000	5.917341000
S	2.659074000	3.122944000	3.050259000
S	3.269974000	-1.526954000	6.439139000
Ν	2.335110000	0.860173000	6.277581000
N	1.866742000	3.959041000	5.514327000
С	1.827474000	4.872163000	6.503847000
Н	1.206245000	4.599252000	7.355617000
С	-0.235176000	0.484422000	6.262463000
С	3.700521000	1.018129000	6.357055000
С	0.534492000	-0.697045000	6.282183000
С	1.946993000	-0.411857000	6.303990000
С	-0.074486000	-1.997170000	6.270272000
С	2.524971000	6.062977000	6.465597000
Η	2.466225000	6.756952000	7.300669000
С	-1.495610000	-2.067738000	6.418809000
С	4.426503000	2.215711000	6.363112000
Н	3.905551000	3.165603000	6.322430000
С	3.295775000	5.426429000	4.285675000

Н	3.851265000	5.611825000	3.368343000
С	-2.146051000	-3.323551000	6.398483000
Н	-3.229651000	-3.346686000	6.521253000
С	4.395685000	-0.205969000	6.444149000
С	2.561174000	4.221366000	4.386925000
С	-2.242629000	-0.863894000	6.506474000
Н	-3.325889000	-0.932608000	6.618711000
С	5.811585000	2.160370000	6.426326000
Н	6.378825000	3.090282000	6.425607000
С	6.492161000	0.934681000	6.489994000
Н	7.580247000	0.919853000	6.536113000
С	-1.642525000	0.363561000	6.388892000
Н	-2.255623000	1.262902000	6.379134000
С	5.786983000	-0.263152000	6.505053000
Н	6.303629000	-1.220386000	6.560230000
С	-1.440194000	-4.486924000	6.187812000
Н	-1.952856000	-5.447867000	6.158063000
С	3.289763000	6.335832000	5.322394000
Н	3.858441000	7.262227000	5.241669000
С	0.613974000	-3.210543000	6.024324000
Н	1.677779000	-3.208945000	5.802447000
С	-0.049668000	-4.419307000	5.976146000
Н	0.513557000	-5.326490000	5.758858000

Cartesian coordinates for $[\mathbf{2} \cdot C_6 F_6]$ (in Å)

Pt	2.148326000	-1.733597000	-9.606171000
S	4.471488000	-2.923203000	-11.982574000
S	0.130269000	-5.736624000	-9.390396000
N	1.773103000	-3.753940000	-9.312663000
N	4.280792000	-1.762140000	-9.527964000
С	-0.451276000	-2.977950000	-9.617178000
С	0.163498000	-1.700312000	-9.676013000
С	0.492794000	-4.050680000	-9.459266000
С	1.815344000	-6.076492000	-9.133925000
С	4.825884000	-1.249483000	-8.408273000
Н	4.117477000	-0.838888000	-7.693916000
С	2.554482000	-4.873360000	-9.107904000
С	3.931195000	-4.921656000	-8.863436000
Η	4.502473000	-4.003740000	-8.802632000
С	2.425049000	-7.318537000	-8.961613000
Η	1.840814000	-8.236222000	-8.990894000
С	6.184280000	-1.259196000	-8.156737000
Η	6.567472000	-0.844875000	-7.228042000
С	5.081275000	-2.255747000	-10.499122000
С	6.478925000	-2.296877000	-10.298287000
Η	7.099751000	-2.701430000	-11.094230000
С	4.537585000	-6.156917000	-8.688589000
Η	5.609109000	-6.199221000	-8.502356000
С	-0.700319000	-0.599579000	-9.790320000
Η	-0.283809000	0.404044000	-9.860561000
С	-2.083412000	-0.766682000	-9.813153000
Η	-2.723084000	0.112605000	-9.885411000
С	3.797459000	-7.347892000	-8.745344000
Η	4.299103000	-8.304137000	-8.608570000
С	7.028303000	-1.812607000	-9.127939000
Η	8.106380000	-1.844090000	-8.975506000
С	-2.662926000	-2.039254000	-9.743565000
Η	-3.744940000	-2.153872000	-9.759654000
С	-1.841185000	-3.152501000	-9.654533000
Η	-2.270325000	-4.152943000	-9.596245000
Pt	2.477844000	-1.889994000	-12.412589000
S	2.334724000	0.533870000	-9.810894000
S	-1.913760000	-1.538752000	-13.263620000
N	0.613061000	-1.144268000	-12.937807000
N	3.536892000	-0.043038000	-12.180881000
С	0.124956000	-3.471077000	-12.937487000
С	1.510888000	-3.607095000	-12.662437000
С	-0.294973000	-2.100307000	-13.036225000
С	-1.337981000	0.101035000	-13.225642000
С	4.388894000	0.243829000	-13.182915000
Η	4.470768000	-0.522900000	-13.950847000
С	0.064037000	0.118561000	-13.053859000
С	0.731553000	1.348388000	-13.037035000
Η	1.809655000	1.378454000	-12.942541000

С	-2.082292000	1.274350000	-13.340430000
Н	-3.162922000	1.239487000	-13.464512000
С	5.102993000	1.424145000	-13.257127000
Н	5.766596000	1.607820000	-14.097873000
С	3.401198000	0.820731000	-11.149658000
С	4.103731000	2.046516000	-11.167621000
Н	3.976625000	2.722804000	-10.325526000
С	-0.008031000	2.516789000	-13.152465000
Н	0.509067000	3.474318000	-13.132727000
С	1.994500000	-4.920221000	-12.548433000
Н	3.044341000	-5.086727000	-12.312443000
С	1.152030000	-6.017805000	-12.714852000
Н	1.565169000	-7.022335000	-12.622679000
С	-1.403438000	2.486188000	-13.294059000
Н	-1.960336000	3.417650000	-13.377616000
С	4.940938000	2.353581000	-12.221424000
Н	5.482462000	3.298588000	-12.232620000
С	-0.212556000	-5.853911000	-12.982984000
Н	-0.860068000	-6.720809000	-13.100760000
С	-0.730067000	-4.571505000	-13.088080000
Н	-1.791269000	-4.418700000	-13.288104000
F	0.712792000	-4.502177000	-6.376810000
F	2.768880000	-2.746188000	-6.354999000
С	0.471329000	-3.207652000	-6.410701000
С	1.527105000	-2.306079000	-6.394405000
F	2.282388000	-0.088908000	-6.496875000
F	-1.837328000	-3.600321000	-6.523683000
F	-2.323973000	-0.938842000	-6.669828000
F	-0.258907000	0.809628000	-6.710698000
С	-0.838061000	-2.743878000	-6.493967000
С	1.276589000	-0.941866000	-6.474506000
С	-1.088455000	-1.378710000	-6.574295000
С	-0.028263000	-0.477445000	-6.576864000

Cartesian coordinates for $[\mathbf{2} \cdot C_6 F_6 \cdot \mathbf{2}]$ (in Å)

Pt	5.232705000	4.093024000	4.326219000
S	8.193486000	5.221721000	5.915677000
S	5.525096000	0.055493000	6.264188000
F	2.455152000	1.230936000	6.379352000
F	2.422202000	3.934373000	6.374899000
Ν	5.323569000	2.567487000	5.730790000
Ν	5.540893000	5.765635000	5.619215000
С	5.026501000	1.273944000	3.760526000
С	4.920617000	2.539805000	3.128320000
С	5.290495000	1.369952000	5.170743000
С	2.167238000	1.882198000	5.270466000
С	5.657693000	1.186056000	7.576943000
С	4.440969000	6.497577000	5.881078000
Η	3.539148000	6.186407000	5.361284000
С	5.509799000	2.506420000	7.097321000
С	5.535891000	3.569502000	8.006418000

Η	5.384238000	4.583650000	7.659039000
С	5.870056000	0.912332000	8.927448000
Н	5.988787000	-0.111307000	9.277439000
С	4.430376000	7.554605000	6.770389000
Н	3.506933000	8.096623000	6.955825000
С	6.720157000	6.099256000	6.189980000
С	6.772476000	7.170586000	7.109741000
Н	7.733059000	7.415745000	7.556744000
С	5.742880000	3.297270000	9.350857000
Н	5.767084000	4.122596000	10.060006000
С	2.158263000	3.270080000	5.267559000
С	4.612776000	2.527548000	1.759071000
Н	4.538565000	3.469243000	1.217370000
С	4.391833000	1.331701000	1.078863000
Н	4.132436000	1.362809000	0.020971000
С	5.917699000	1.983297000	9.811564000
Н	6.081586000	1.797916000	10.871563000
С	5.631471000	7.887463000	7.409479000
Н	5.674176000	8.711707000	8.120384000
С	4.492632000	0.096990000	1.730588000
Н	4.312114000	-0.829140000	1.188510000
С	4.823342000	0.067668000	3.077070000
Н	4.900578000	-0.882311000	3.606278000
F	1.885153000	5.280743000	4.091093000
F	1.888630000	-0.133775000	4.105779000
F	1.319241000	1.217896000	1.825336000
F	1.352925000	3.921283000	1.814530000
С	1.887511000	1.183742000	4.102429000
С	1.886140000	3.957203000	4.094960000
С	1.607003000	1.875446000	2.930514000
С	1.614977000	3.263101000	2.926040000
Pt	8.021214000	4.236659000	3.859920000
S	4.971983000	5.621018000	2.647258000
s	7.905301000	0.916486000	0.846559000
Ν	8.014214000	3.182208000	2.071629000
N	7.590100000	6.195500000	3.108663000
С	8.431070000	1.395925000	3.583466000
С	8.459900000	2.428742000	4.557020000
С	8.138629000	1.879807000	2.262442000
С	7.622382000	2.361945000	-0.076196000
С	8.644547000	7.032199000	3.090698000
Н	9.561369000	6.625048000	3.512669000
С	7.736235000	3.498011000	0.755659000
С	7.583780000	4.770568000	0.194003000
Н	7.706981000	5.652796000	0.809492000
С	7.322664000	2.468555000	-1.433570000
Н	7.231329000	1.580501000	-2.055978000
С	8.591725000	8.308778000	2.565370000
Н	9.479473000	8.935543000	2.565187000
С	6.389206000	6.621442000	2.656217000
С	6.270853000	7.917285000	2.104462000
Н	5.294097000	8.234751000	1.746991000

С	7.285607000	4.877822000	-1.156990000
Η	7.158690000	5.866551000	-1.594001000
С	8.739596000	2.031264000	5.874171000
Н	8.749169000	2.776367000	6.668002000
С	8.987791000	0.696638000	6.189446000
Н	9.203651000	0.426978000	7.223379000
С	7.146282000	3.740197000	-1.966025000
Н	6.907684000	3.852146000	-3.022105000
С	7.367800000	8.752935000	2.047650000
Н	7.273505000	9.751776000	1.623547000
С	8.951096000	-0.301900000	5.208417000
Н	9.137567000	-1.341439000	5.471739000
С	8.663860000	0.050015000	3.898064000
Н	8.621989000	-0.711292000	3.118148000
Pt	-1.465545000	4.072038000	3.837660000
S	-4.429690000	5.214716000	2.260502000
S	-1.754548000	0.031149000	1.906182000
N	-1.558570000	2.544180000	2.436623000
N	-1.772299000	5.743525000	2.542472000
С	-1.256222000	1.253856000	4.408089000
С	-1.153144000	2.520988000	5.038440000
С	-1.521268000	1.347389000	2.997895000
С	-1.893530000	1.160085000	0.592643000
С	-0.669376000	6.468553000	2.274339000
Н	0.236613000	6.139894000	2.775564000
С	-1.749254000	2.481389000	1.070789000
С	-1.785028000	3.543889000	0.161345000
н	-1.638909000	4.559088000	0.507992000
С	-2.109553000	0.884513000	-0.756884000
Н	-2.225268000	-0.139860000	-1.105709000
С	-0.660459000	7.535223000	1.396566000
н	0.265377000	8.071161000	1.205611000
С	-2.954557000	6.089701000	1.985550000
C	-3.008837000	7.171614000	1.078494000
н	-3.972150000	7.427973000	0.643833000
С	-1.995939000	3.269815000	-1.182152000
н	-2.027841000	4.094631000	-1.891583000
С	-0.846267000	2.511311000	6.407864000
н	-0.774040000	3,454023000	6.948076000
C	-0.623576000	1.316906000	7.090152000
н	-0.365048000	1 350253000	8 148185000
C	-2.165487000	1.954698000	-1.641486000
н	-2 332562000	1 767887000	-2 700738000
C	-1 866225000	7 884772000	0.775626000
н	-1 910858000	8 717796000	0.075148000
C	-0.721327000	0.081053000	6.440246000
н	-0.539338000	-0.843918000	6.983807000
C	-1.051026000	0.049077000	5,093523000
н	-1.126052000	-0.901869000	4.565719000
Pt	-4.252846000	4.223372000	4.313166000
s	-1.198289000	5.602953000	5.513529000
S	-4.133468000	0.898319000	7.321163000
~		0.020012000	,

Ν	-4.242238000	3.165847000	6.099541000
Ν	-3.818074000	6.180387000	5.065863000
С	-4.663807000	1.382306000	4.585860000
С	-4.693598000	2.416714000	3.614012000
С	-4.368795000	1.863913000	5.907143000
С	-3.846765000	2.342125000	8.245338000
С	-4.871591000	7.018109000	5.089785000
Н	-5.791130000	6.611967000	4.672790000
С	-3.960536000	3.479456000	7.415220000
С	-3.803682000	4.750998000	7.977927000
Н	-3.926363000	5.634187000	7.363716000
С	-3.543314000	2.446443000	9.602048000
Н	-3.452015000	1.557434000	10.223095000
С	-4.814514000	8.294542000	5.614990000
Н	-5.701602000	8.922218000	5.620323000
С	-2.614258000	6.604940000	5.511617000
С	-2.491402000	7.900725000	6.062654000
Н	-1.512266000	8.217153000	6.414563000
С	-3.501593000	4.855962000	9.328244000
Н	-3.371132000	5.843870000	9.766068000
С	-4.974329000	2.021355000	2.296458000
Н	-4.984687000	2.767826000	1.503922000
С	-5.222317000	0.687158000	1.979149000
Н	-5.438585000	0.419098000	0.944887000
С	-3.362726000	3.717063000	10.135560000
Н	-3.120974000	3.827205000	11.191112000
С	-3.587156000	8.737439000	6.125727000
Н	-3.489426000	9.736171000	6.549313000
С	-5.185023000	-0.312911000	2.958602000
Н	-5.371553000	-1.352045000	2.693732000
С	-4.897044000	0.036924000	4.269346000
Н	-4.854587000	-0.725644000	5.048000000