Supplementary Information for

Supported Polymeric Organic Framework Composed of Dual

Electrocatalytic Active Sites for High-Performance Carbon Dioxide

Electroreduction

Shengsheng Huang^a, Qizhe He^a, Hongwei Li^a, Jinjie Qian^{b,*}, Wei Xu^a, Ting-Ting Li^{a,*} ^aSchool of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.

^bCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China.

*Corresponding author. E-mail addresses: jinjieqian@wzu.edu.cn (J. Qian), litingting@nbu.edu.cn (T.-T. Li).

Fig. S1. SEM images of (a) CoPOF-Bpy@CNT and (b) CoPOF-Bpy.

Fig. S2. AC HAADF-STEM image of CoPOF-Bpy@CNT, partial of single Co atoms are highlighted by red circles.

Tuble of the concents of the sumples	Table S1	The Co	contents	of the	samp	les.
---	----------	--------	----------	--------	------	------

Sample	Co wt%
CoPOF-Bda@CNT	1.9
CoPOF-Bpda@CNT	1.8
CoPOF-Bpy@CNT	3.7

Fig. S3. XPS spectra of CoPOF-Bpy@CNT and CoPOF-Bpy.

Fig. S4. Raman spectra of CoPOF-Bpy@CNT and CNTs.

Fig. S5. CO₂ adsorption isotherms of CoPOF-Bpy@CNT, CoPOF-Bpda@CNT, and CoPOF-Bda@CNT at 298 K.

Fig. S6. FT-IR spectrum of CoPOF-Bda@CNT.

Fig. S7. FT-IR spectrum of CoPOF-Bpda@CNT.

Fig. S8. XRD patterns of CoPOF-Bda@CNT.

Fig. S9. XRD patterns of CoPOF-Bpda@CNT.

Fig. S10. TEM images of (a) CoPOF-Bda@CNT and (b) CoPOF-Bpda@CNT.

Fig. S11. XPS spectrum of CoPOF-Bda@CNT.

Fig. S12. Co 2p XPS spectrum of CoPOF-Bda@CNT.

Fig. S13. XPS spectrum of CoPOF-Bpda@CNT.

Fig. S14. Co 2p XPS spectrum of CoPOF-Bpda@CNT.

Fig. S15. Mass activities of CoPOF-Bpy@CNT CoPOF-Bda@CNT, and CoPOF-Bpda@CNT by normalizing the current densities with respect to the Co contents.

Fig. S16. LSV plot of pure CNTs in a CO₂-saturated KHCO₃ solution.

Fig. S17. LSV plots of CoPOF-Bpy@CNT and POF-Bpy@CNT in a CO₂-saturated KHCO₃ solution.

Fig. S18. LSV plots of CoPOF-Bpy@CNT(X) in a CO₂-saturated KHCO₃ solution.

Fig. S19. SEM image of CoPOF-Bpy@CNT(30).

Fig. S20. LSV plots of CoPOF-Bpy@CNT and CoPOF-Bpy/CNT in a CO₂-saturated KHCO₃ solution.

Fig. S21. Time-dependent total catalytic current densities $(j_{total} \sim t)$ of CoPOF-Bda@CNT in a wide potential range from -0.5 V to -1.0 V vs RHE.

Fig. S22. Time-dependent total catalytic current densities $(j_{total} \sim t)$ of CoPOF-Bpda@CNT in a wide potential range from -0.5 V to -1.0 V vs RHE.

Fig. S23. ¹H NMR spectrum of liquid product after long-term CO_2RR for CoPOF-Bpy@CNT at -0.7 V vs RHE in CO_2 -saturated 0.5 M KHCO₃ solution.

Fig. S24. FE_{CO} and FE_{H2} of (a) CoPOF-Bpda@CNT and (b) CoPOF-Bda@CNT at different applied potentials.

Fig. S25. (a) FE_{CO} of CoPOF-Bpy@CNT, CoPOF-Bpy, and CoPOF-Bpy/CNT at different applied potentials; (b) Partial current densities of CO, (c) Tafel plots, and (d) TOF values of CoPOF-Bpy@CNT, CoPOF-Bpy, and CoPOF-Bpy/CNT.

Fig. S26. LSV plots of CoPOF-Bpy@CNT, CoPOF-Bpy, and CoPOF-Bpy/CNT in a CO₂-saturated 0.5 M KHCO₃ solution.

Fig. S27. CV plots of CoPOF-Bpy@CNT and CoPOF-Bpy in a 0.1 M NBu₄PF₆/DMF solution under nitrogen atmosphere with a scan rate of 100 mV s⁻¹.

Fig. S28. CV plots of CoPOF-Bpy@CNT and CoPOF-Bda@CNT in a 0.1 M NBu_4PF_6/DMF solution under nitrogen atmosphere with a scan rate of 100 mV s⁻¹.

Fig. S29. CV plots of CoPOF-Bda@CNT in the non-Faradaic region with various scan rates ($10 \sim 100 \text{ mV s}^{-1}$).

Fig. S30. CV plots of CoPOF-Bpda@CNT in the non-Faradaic region with various scan rates ($10 \sim 100 \text{ mV s}^{-1}$).

Fig. S31. CV plots of CoPOF-Bpy@CNT in the non-Faradaic region with various scan rates ($10 \sim 100 \text{ mV s}^{-1}$).

Fig. S32. The comparison of FT-IR spectra of CoPOF-Bpy@CNT before and after long-term CO₂RR.

Fig. S33. The comparison of XRD patterns of CoPOF-Bpy@CNT before and after long-term CO₂RR.

Fig. S34. The comparison of Co 2p XPS spectra of CoPOF-Bpy@CNT before and after long-term CO₂RR.

Table S2 Comparison of the electrocatalytic CO_2RR performance of recently reportedCoPor-based POFs electrocatalysts.

Catalysts	Electrolyte	V vs. RHE	FE_{CO} / %	$j_{CO}/mAcm^{-2}$	TOF / s^{-1}	Ref.
CoPOF-Bpy@CNT			97.5	7.9	36.6 at -1.0 V	
CoPOF-Bpda@CNT	0.5 M KHCO ₃	-0.7	70.3	5.7	26 at -1.0 V	This work
CoPOF-Bda@CNT			76.8	1.6	13.7 at -1.0 V	
COF-367-Co	0.5 M KHCO ₃		90	3.3	0.53	1
COF-367-Co(1%)		-0.6/	90	0.45	2.6	1
COF-366-Co@CNT			92	6.8	/	
COF-366-(OMe) ₂ -Co@CNT	0.5 M KHCO ₃	0.69	94	7.3	11877 $h^{\!-\!1}$ at –0.77 V	2
COF-366-(OH)2-Co@CNT		M KHCO ₃ -0.68	90	6.0	/	
COF-366-(F) ₄ -Co@CNT			91	5.7	/	
CoCoPCP	0.5 M KHCO ₃	0.55	82	1.5	0.9	2
CoCoPCP/CNTs		-0.55	94	8.1	2.4	3
MWCNT-Por-COF-Co	0.5 M KHCO ₃	-0.6	99.3	18.77 at -1.0 V	72 at -1.0 V	4
CoP@CNT			98		2.2	
CoP-Ph@CNT	0.5 M KHCO ₃	-0.57	82	/	0.9	5
CoP-F@CNT			12		0.1	

References

- S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi and C. J. Chang, Covalent organic frameworks comprising cobalt porphyrins for catalytic CO₂ reduction in water, *Science*, 2015, **349**, 1208–1203.
- Y. Lu, J. Zhang, W. Wei, D.-D. Ma, X.-T. Wu and Q.-L. Zhu, Efficient carbon dioxide electroreduction over ultrathin covalent organic framework nanolayers with isolated cobalt porphyrin units, ACS Appl. Mater. Interfaces, 2020, 12, 37986–37992.
- T. Wang, L. Xu, Z. Chen, L. Guo, Y. Zhang, R. Li and T. Peng, Central site regulation of cobalt porphyrin conjugated polymer to give highly active and selective CO₂ reduction to CO in aqueous solution, *Appl. Catal. B*, 2021, 291, 120128.
- H. Dong, M. Lu, Y. Wang, H.-L. Tang, D. Wu, X. Sun and F.-M. Zhang, Covalently anchoring covalent organic framework on carbon nanotubes for highly efficient electrocatalytic CO₂ reduction, *Appl. Catal. B*, 2022, **303**, 120897.
- 5. Y. Wang, X.-P. Zhang, H. Lei, K. Guo, G. Xu, L. Xie, X. Li, W. Zhang, U.-P. Apfel and R. Cao, Tuning electronic structures of covalent Co porphyrin

polymers for electrocatalytic CO_2 reduction in aqueous solution, *CCS Chem.*, 2022, 4, 2959–2967.