Supporting Information

Halogenation triggering rules in hybrids for fluorescence and dielectric phase transitions

Jun-Qin Wang,^a Gele Teri,^a Hao-Fei Ni,^a Qing-Feng Luo,^a Xiao-Ping Wang,^a Da-Wei Fu^{*a}, Yi Zhang^{*a} and Qiang Guo^{*a}

^a Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China

AUTHOR INFORMATION

Corresponding Author

dawei@zjnu.edu.cn; yizhang1980@seu.edu.cn; qiangguo@zjnu.edu.cn.

Figure S1. PXRD patterns of (a) TMBPA - ClBr, (b) TMBPA - Br, and (c)

TMIPA – I at room temperatures.

Figure S2. The crystal structures (without hydrogen atoms) of TMIPA-I in LTP and HTP.

Figure S3. Variable-temperature powder X-ray diffraction (PXRD) patterns of TMBPA-Br measured in the temperature range of 353-433 K.

Figure S4. (a) DSC curves of TMBPA - ClBr, TMBPA - Br, and TMIPA
- I recorded on cooling. Dielectric constant of (b) TMBPA - ClBr, (c)
TMBPA - Br, and (d) TMIPA - I recorded at different frequencies.

Figure S5. Ultraviolet–vis absorption spectrum of compounds. Inset: Tauc plot.

TMBPA-ClBr	LTP	ITP	HTP
CCDC Code	2220969	2220970	2220971
Formula	$C_6H_{15}Br_2CdCl_2N$	$Br_2C_6CdCl_2N$	$Br_2C_6CdCl_2N$
Fw	444.31	429.19	429.19
Temperature	295 K	385.15 K	405.15 K
Crystal Syst	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pnma	Стст	Стст
a(Å)	11.635(3)	15.411(14)	15.479(5)
$b(\text{\AA})$	7.3428(14)	11.677(9)	11.741(3)
$c(\text{\AA})$	15.379(4)	7.365(7)	7.402(2)
$\alpha/^{\circ}$	90	90	90
$eta /^{\circ}$	90	90	90
γ/°	90	90	90
$V(Å^3)$	1314.0(5)	1325(2)	1345.2(7)
Ζ	4	4	4
$\mu(\text{mm}^{-1})$	8.108	8.035	7.917
GOF on F ²	1.052	1.194	1.250
$R_1[[I > 2\sigma(I)]]$	0.0668	0.1080	0.0981
wR_2 (all data)	0.2261	0.2650	0.2398

 Table S1. Crystallographic data and structure refinement details of

TMBPA–ClBr in high and low temperatures.

Table S2. Crystallographic data and structure refinement details of

TMBPA - Br	LTP	ITP
CCDC Code	2220972	2220973
Formula	$C_{18}H_{45}Br_9Cd_{1.5}N_3$	$C_{12}H_{30}Br_6CdN_2$
Fw	1191.36	794.24
Temperature	288 K	385.15 K
Crystal Syst	Monoclinic	Monoclinic
Space group	P2/c	C2/c
<i>a</i> (Å)	24.015(7)	33.148(18)
$b(\text{\AA})$	9.642(3)	9.669(6)
$c(\text{\AA})$	16.046(4)	15.960(8)
$\alpha/^{\circ}$	90	90
$eta/^{\circ}$	91.474(5)	96.244(9)
γ/°	90	90
$V(Å^3)$	3714.4(18)	5085(5)
Ζ	4	4
μ (mm ⁻¹)	10.560	10.286
GOF on F ²	1.008	0.989
$R_1[[I > 2\sigma(I)]]$	0.0408	0.0785
wR_2 (all data)	0.1013	0.2746

TMBPA-Br in high and low temperatures.

Table S3. Crystallographic da	ta and structure refinement details of
-------------------------------	--

TMIPA - I	LTP	HTP
CCDC Code	2220974	2220975
Formula	$C_{12}H_{30}CdI_6N_2$	$C_{12}H_{30}CdI_6N_2$
Fw	1076.18	1076.18
Temperature	223 K	427 K
Crystal Syst	Monoclinic	Monoclinic
Space group	C2/c	C2/c
<i>a</i> (Å)	16.090(2)	16.423(5)
$b(\text{\AA})$	9.3746(12)	9.478(2)
$c(\text{\AA})$	18.4146(19)	18.835(5)
$\alpha/^{\circ}$	90	90
β°	106.203(6)	106.070(5)
$\gamma^{\prime \circ}$	90	90
$V(Å^3)$	2667.3(6)	2817.3(13)
Ζ	4	4
$\mu(\text{mm}^{-1})$	7.762	7.348
GOF on F ²	1.070	1.044
$R_1[[I > 2\sigma(I)]]$	0.0231	0.0484
wR_2 (all data)	0.0484	0.1676

TMIPA-I in high and low temperatures.

Temperature	Bond distances [Å]			
	Cd1-Br2	2.5581(16)	N1-C3	1.463(14)
	Cd1-Cl1	2.6151(13)	N1-C2	1.476(19)
	Cd1-Cl11	2.6151(13)	N1-C24	1.476(19)
288 K	Cd1-Cl12	2.6397(13)	N1-C1	1.512(11)
	Cd1-Cl13	2.6397(13)	N1-C14	1.512(11)
	Br1-C6	1.927(10)	C4-C5	1.507(12)
	N1-C4	1.455(12)	C6-C5	1.500(12)
	Br1-C2	1.509(10)	Cd1-Br2	2.524(7)
	Br1-C4	1.466(10)	Cd1-Cl1	2.636(4)
385.15 K	Br1-C31	1.476(10)	Cd1-Cl12	2.636(4)
	Br1-C3	1.476(10)	Cd1-Cl13	2.636(4)
	C2 - C1	1.565(10)	Cd1-Cl14	2.636(4)
	Br1-C1	1.475(10)	C4-C5	1.543(9)
	Br1-C11	1.475(10)	Br2-Cd1	2.538(5)
405.15 K	Br1-C2	1.467(9)	Cd1-Cl1	2.649(3)
	Br1-C3	1.472(9)	Cd1-Cl12	2.649(3)
	Br1-C31	1.472(9)	Cd1-Cl13	2.649(3)
	Br1-C4	1.898(16)	Cd1-Cl14	2.649(3)
	C1-C11	2.03(3)		

385.15 K and 405.15 K.

Table S4. The key bond distances (Å) of TMBPA-ClBr at 288 K $\$

Temperature	Bond distances [Å]			
	Cd2-Br10	2.6102(10)	N1-C1	1.509(8)
	Cd2-Br101	2.6102(10)	N1-C3	1.493(9)
	Cd2-Br81	2.5653(10)	N1-C4	1.532(10)
	Cd2-Br8	2.5654(10)	N1-C2	1.493(9)
	Cd1-Br7	2.6193(11)	N2-C10	1.521(9)
	Cd1-Br6	2.6001(11)	N2-C9	1.502(9)
	Cd1-Br5	2.5758(11)	N2-C8	1.514(10)
288 K	Cd1-Br4	2.5728(11)	N2-C7	1.461(11)
	Br2-C12	1.933(8)	C10-C11	1.498(10)
	Br9-C6	1.950(8)	C11-C12	1.519(10)
	Br3-C18	1.927(10)	C16-C17	1.502(11)
	N3-C16	1.520(9)	C4-C5	1.497(11)
	N3-C15	1.498(9)	C6-C5	1.495(11)
	N3-C14	1.480(10)	C17-C18	1.521(12)
	N3-C13	1.506(10)		
	Cd1-Br5	2.624(2)	N1-C5	1.48(3)
	Cd1-Br7	2.601(2)	C1-C10	1.537(9)
	Cd1-Br6	2.580(3)	C1-C3	1.538(19)
	Cd1-Br8	2.576(3)	C10-C12	1.535(9)
	Br4-C12	1.949(10)	Br2-C11	1.844(9)
383 K	N2-C1	1.50(2)	C9-C5	1.559(7)
	N2-C4	1.49(2)	C9-C11	1.560(7)
	N2-C6	1.47(2)	C5-C7	1.596(16)
	N2-C8	1.51(2)	C3-C13	1.537(19)
	N1-C14	1.46(3)	C13-Br3	1.951(10)
	N1-C16	1.44(3)	C7-C15	1.630(15)
	N1-C2	1.47(3)	C15-Br1	1.655(15)

Table S5. The key bond distances (Å) of TMBPA-Br at 288 K and 383 K.

Temperature	Bond distances [Å]			
	I1-C6	2.161(3)	C4-C5	1.517(4)
	N1-C4	1.509(4)	C5-C6	1.515(5)
223 K	N1-C2	1.498(4)	I3-Cd1	2.7744(3)
	N1-C1	1.502(4)	I2-Cd1	2.7934(4)
	N1C3	1.489(5)		
	Cd1-I3	2.7932(9)	N1-C6	1.503(16)
	Cd1-I31	2.7932(9)	N1-C4	1.513(12)
	Cd1-I2	2.7702(9)	N1-C7	1.496(12)
427 K	Cd1-I21	2.7702(9)	N1-C5	1.502(15)
	I1-C1	2.098(11)	N1-C8	1.500(15)
	N1-C3	1.558(12)	C3-C2	1.468(13)
_	N1-C9	1.494(12)	C2-C1	1.517(16)

Table S6. The key bond distances (Å) of TMIPA-I at 223 K and 427 K.

Table S7. The key angles (°) of TMBPA-ClBr at 288 K $_{\sim}$ 385.15 K and

Temperature	angles (°)			
	Br2-Cd1-Cl1	107.03(4)	C4-N1-C14	108.8(7)
	Br2-Cd1-Cl11	107.03(4)	C4-N1-C1	108.8(7)
	Br2-Cd1-Cl12	105.39(4)	C3-N1-C24	119.5(17)
	Br2-Cd1-Cl13	105.39(4)	C3-N1-C2	119.5(17)
	Cl11-Cd1-Cl12	82.38(5)	C3-N1-C14	105.4(8)
295 K	Cl11-Cd1-Cl13	147.54(3)	C3-N1-C1	105.4(8)
	Cl12-Cd1-Cl13	87.59(6)	C24-N1-C2	37(4)
	Cl1-Cd1-Cl12	147.54(3)	C24-N1-C14	39.9(15)
	Cl1-Cd1-Cl11	89.72(6)	C2-N1-C14	76(2)
	Cl1-Cd1-Cl13	82.38(5)	C14-N1-C1	116.4(16)
	Cd1-Cl1-Cd13	97.62(5)	N1-C4-C5	118.4(7)
	C4-N1-C3	112.0(8)	C5-C6-Br1	112.4(7)
	C4-N1-C2	124.6(17)	C6-C5-C4	108.6(9)
	C4-N1-C24	124.6(17)		
	C4-Br1-C2	99(4)	Br2-Cd1-Cl14	106.24(6)
	C4-Br1-C3	134(2)	Br2-Cd1-Cl15	106.24(6)
	C4-Br1-C31	134(2)	Cl13-Cd1-Cl14	88.59(15)
	C3-Br1-C2	88.5(11)	Cl13-Cd1-Cl1	147.53(11)
	C31-Br1-C2	88.5(11)	Cl15-Cd1-Cl1	88.59(15)
385.15 K	C3-Br1-C31	91(5)	Cl14-Cd1-Cl1	82.42(17)
	Br1-C2-C1	146.2(19)	Cl13-Cd1-Cl15	82.42(17)
	C22-C1-C2	152(4)	Cl15-Cd1-Cl14	147.53(11)
	Br2-Cd1-Cl13	106.24(6)	Cd1-Cl1-Cd14	97.58(17)
	Br2-Cd1-Cl1	106.24(6)		
	C1-B+1-C11	87 1(18)	C5-C4-Br1	117 9(10)
	$C11_Br1_C4$	89 9(14)	C42-C5-C4	109 6(16)
	C1-Br1-C4	89.9(14)	Br2-Cd1-Cl1	106.23(4)
	C^2 -Br1-C1	136 4(9)	Br2-Cd1-Cl13	106.23(4)
	C2-Br1-C11	136.4(9)	Br2-Cd1-Cl14	106.23(4)
	$C_2 Br_1 C_3$	109.0(14)	Br2-Cd1-Cl15	106.23(4)
405 15 K	C2-Br1-C31	109.0(14)	Cl14-Cd1-Cl13	82 41(13)
405.15 K	C2-Br1-C4	92 7(11)	Cl13-Cd1-Cl1	88 62(11)
	C3-Br1-C4	75 9(9)	Cl15-Cd1-Cl1	82.41(13)
	C31-Br1-C4	75.9(9)	Cl14-Cd1-Cl1	147.55(9)
	Br1-C1-C1	46.4(9)	Cd15-Cl1-Cd1	97.58(13)

405.15 K.

Table S8. The key angles (°) of TMBPA-Br at 288 K and 383 K.

Temperature		angles (0)	
	Br10-Cd2-Br101	106.48(5)	C3-N1-C4	113.0(6)
	Br81-Cd2-Br101	109.95(3)	C2-N1-C1	108.7(6)
	Br8-Cd2-Br10	109.95(3)	C2-N1-C3	109.3(6)
	Br8-Cd2-Br101	103.01(4)	C2-N1-C4	105.8(6)
	Br81-Cd2-Br10	103.01(4)	C9-N2-C10	111.0(6)
	Br81-Cd2-Br8	123.52(5)	C9-N2-C8	108.4(6)
	Br6-Cd1-Br7	106.76(4)	C8-N2-C10	107.6(6)
	Br5-Cd1-Br7	107.71(4)	C7-N2-C10	111.5(6)
	Br5-Cd1-Br6	109.90(4)	C7-N2-C9	109.3(7)
288 K	Br4-Cd1-Br7	105.66(4)	C7-N2-C8	109.0(7)
	Br4-Cd1-Br6	110.06(4)	C11-C10-N2	116.2(6)
	Br4-Cd1-Br5	116.23(4)	C10-C11-C12	108.6(6)
	C15-N3-C16	110.3(6)	C17-C16-N3	115.5(7)
	C15-N3-C13	108.6(6)	C5-C4-N1	115.9(7)
	C14-N3-C16	112.2(6)	C11-C12-Br2	112.3(5)
	C14-N3-C15	110.1(6)	C5-C6-Br9	114.3(6)
	C14-N3-C13	107.9(6)	C6-C5-C4	112.9(7)
	C13-N3-C16	107.5(6)	C16-C17-C18	114.2(8)
	C1-N1-C4	110.5(6)	C17-C18-Br3	112.3(7)
	C3-N1-C1	109.3(6)		
	Br7-Cd1-Br5	106 33(9)	C16-N1-C2	109(2)
	Br6-Cd1-Br5	106.21(9)	C16-N1-C5	112(2)
	Br6-Cd1-Br7	108.13(9)	C2-N1-C5	98(2)
	Br8-Cd1-Br5	104 30(10)	N2-C1-C10	115.9(17)
	Br8-Cd1-Br7	109.78(10)	N2-C1-C	119(7)
	Br8-Cd1-Br6	121.08(11)	C12-C10-C1	112.0(19)
	C1-N2-C8	109.2(15)	C10-C12-Br4	110.6(14)
383 K	C4-N2-C1	113.7(15)	C5-C9-C11	84(4)
	C4-N2-C8	110.2(16)	N1-C5-C9	117(3)
	C6-N2-C1	108.3(15)	N1-C5-C7	110(2)
	C6-N2-C4	110.0(15)	C9-C11-Br2	111(5)
	C6-N2-C8	105.1(15)	C13-C3-C1	132(10)
	C14-N1-C2	110(2)	C3-C13-Br3	103(10)
	C14-N1-C5	112(2)	C5-C7-C15	105.8(19)
	C16-N1-C14	115(2)	C7-C15-Br1	116.0(18)

Table S9. The key angles (°) of TMIPA-I at 223 K and 427 K.

Temperature	angles (°)			
	C2-N1-C4	108.4(2)	C5-C6-I1	113.7(2)
	C2-N1-C1	107.7(3)	I3-Cd1-I31	112.378(17)
223 K	C1-N1-C4	111.4(3)	I3-Cd1-I21	107.748(11)
	C3-N1-C4	110.4(3)	I31-Cd1-I21	109.370(10)
	C3-N1-C2	108.5(3)	I3-Cd1-I2	109.370(10)
	C3-N1-C1	110.4(3)	I31-Cd1-I2	107.748(11)
	N1-C4-C5	115.6(3)	I21-Cd1-I2	110.230(17)
	C6-C5-C4	111.7(3)		
	I3-Cd1-I31	110.62(4)	C4-N1-C3	110.9(11)
	I2-Cd1-I3	107.87(3)	C7-N1-C3	111.0(10)
	I21-Cd1-I31	107.87(3)	C7-N1-C5	97(2)
	I2-Cd1-I31	108.42(3)	C7-N1-C8	87(2)
	I21-Cd1-I3	108.42(3)	C5-N1-C3	112.6(19)
427 K	I2-Cd1-I21	113.65(5)	C8-N1-C3	109(2)
	C9-N1-C3	103.8(10)	C8-N1-C5	133(3)
	C9-N1-C6	135(4)	C2-C3-N1	117.6(8)
	C9-N1-C4	96.0(17)	C3-C2-C1	112.9(10)
	C6-N1-C3	109(3)	C2-C1-I1	116.3(8)
	C6-N1-C4	100(4)		