Electronic Supplementary Information

A Thermally Induced Fluorescence Enhancement Strategy for Efficient All-Inorganic

Rubidium Manganese Halides

Huidong Tang, ^a Yanqiao Xu, ^{*, a, c} Qing Hu, ^a Sanhai Wang, ^a Jian Liang, ^{*, a, c} Lianjun Wang, ^{*, b, c} and Wan Jiang ^{b, c}

a. School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403,

P. R. China.

E-mail: xuyanqiao@jcu.edu.cn

b. Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China.

E-mail: wanglj@dhu.edu.cn

c. Address here National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333001, P. R. China.

E-mail: liangjian@jcu.edu.cn

Atom	Position	x	У	z	Ueq(Ų)	Occupancy		
Rb1	2i	0.24252(25)	0.15534(16)	0.12391(16)	0.0342(3)	1		
Br1	2i	0.75687(25)	0.87839(16)	0.38181(16)	0.0408(3)	1		
Br2	2i	0.26293(25)	0.64119(16)	0.16331(16)	0.0515(0)	1		
01	2i	0.76503(25)	0.36858(16)	0.33953(16)	0.0097(0)	1		
Mn1	1g	0	0.50000	0.50000	0.3113(3)	1		
Space group: P-1 (No. 2), triclinic, Z=1, α=66.0032(7)°, β=87.7903(14)°, y=84.8967(14)°								
Cell parameters		a= 5.8916(0) Å b= 6.8800(1) Å c= 7.3647(1) Å and V= 271.64(1) Å ³						
Reliability factor:		R _{wp} =11.68%, R _p =8.36%, χ ² =1.82						

Table S1. The lattice parameters of $Rb_2MnBr_4 \cdot 2H_2O$.

Table S2. The EDS analysis of $Rb_2MnBr_4 \cdot 2H_2O$ with different temperature treatment.

Sample with different temperature treatment	Rb/(Atomic %)	Mn/(Atomic %)	Br/(Atomic %)	O/(Atomic %)
30 °C	26.02	8.70	40.68	24.59
160 °C	30.91	10.41	46.40	12.28

Fig. S1 (a) SEM images and (b) EDS mapping of $Rb_2MnBr_4 \cdot 2H_2O$.

Fig. S2 PLE and PL spectra of $Rb_2MnBr_4 \cdot 2H_2O$ at room temperature.

Fig. S3 TGA curves of (a) $Rb_2MnBr_4 \cdot 2H_2O$ and (b) $Rb_2MnBr_4 \cdot 2H_2O$ after 160 °C treatment.

Fig. S4 Temperature-dependent XRD patterns of Rb₂MnBr₄·2H₂O crystals.

Fig. S5 FT-IR spectra of $Rb_2MnBr_4 \cdot 2H_2O$ crystals with different temperature.

Fig. S6 (a) SEM images and (b) EDS mapping of $Rb_2MnBr_4 \cdot 2H_2O$ after heat treatment at 160 °C.

Fig. S7 (a) XPS survey, high-resolution spectra of (b) Br 2p, (c) Rb 3d, (d) Mn 2p and (e) O 1s for Rb₂MnBr₄·0.9 H₂O and Rb₂MnBr₄·2H₂O.

Fig. S8 Optimized structures of (a) $Rb_2MnBr_4 \cdot 2H_2O$ and (b) $Rb_2MnBr_4 \cdot 1H_2O$.

Fig. S9 (a) Absorption spectra of $Rb_2MnBr_4 \cdot 2H_2O$ after heat treatment at 30 °C and 160 °C, the fitted band gap of $Rb_2MnBr_4 \cdot 2H_2O$ after heat treatment at (b) 30 °C and (c) 160 °C by the Tauc plot method.

Fig. S10 (a) Normalized PL intensity of $Rb_2MnBr_4 \cdot 2H_2O$ in the dehydration-hydration cycles, (b) PL spectra of $Rb_2MnBr_4 \cdot 2H_2O$ in dehydration cycles, XRD pattern of $Rb_2MnBr_4 \cdot 2H_2O$ in (c) hydration cycles and (d) dehydration cycles.

The calculations of crystal field (Δ) are based on Tanabe-Sugano energy diagram of d⁵ electronic configurations, which can be obtained by the following equation (Eqs. (1)–(4)):

$\Delta = 10D_q$	(1)
${}^{6}A_{1}({}^{6}S) \rightarrow [{}^{4}E({}^{4}G), {}^{4}A_{1}({}^{4}G)] = 10B + 5C + 20\alpha$	(2)
$^{6}A_{1}(^{6}S) \rightarrow {}^{4}E(^{4}D) = 17B + 5C + 6\alpha$	(3)
${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{2}({}^{4}D) = 13B + 5C + 8\alpha$	(4)
${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{2}({}^{4}G) = -10D_{q} + 18B + 6C - (26B^{2}/10D_{q}) + 22\alpha$	(5)
The ${}^{6}A_{1}({}^{6}S) \rightarrow [{}^{4}E({}^{4}G), {}^{4}A_{1}({}^{4}G)], {}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}E({}^{4}D), {}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{2}({}^{4}D) \text{ and } {}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{2}({}^{4}D) \text{ and } {}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}E({}^{4}D), {}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{2}({}^{4}D) \text{ and } {}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}E({}^{4}D), {}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}E({}^{6}D), {}^{6}A_{1}({}^{6}S) \rightarrow {}^{6}E({}^{6}D), {}^{6}A_{1}({}^{6}D), {}^{6}A_{$	\rightarrow $^{4}T_{2}(^{4}G)$

can be obtained via converting the PLE into the diagram of energy coordinates.