Electronic Supplementary Information

Experimental Section

Materials: Sodium nitrate (NaNO₃, 99.9%), ammonium chloride (NH₄Cl), sodium hydroxide (NaOH), ethanol (C₂H₆O, 99.9%), sodium salicylate (C₇H₅NaO₃), trisodium citrate dihydrate (C₆H₅Na₃O₇·2H₂O), p-dimethylaminobenzaldehyde (C₉H₁₁NO), sodium nitroferricyanide dihydrate (C₅FeN₆Na₂O·2H₂O) and sodium hypochlorite solution (NaClO) were purchased from Aladdin Co., Ltd. (Shanghai, China). Sulfuric acid (H₂SO₄), hydrogen peroxide (H₂O₂), hydrochloric acid (HCl), hydrazine monohydrate (N₂H₄·H₂O) and ethylalcohol (C₂H₅OH) were bought from Beijing Chemical Corporation. (China). Cobalt chloride nitrate hexahydrate (CoCl₂·6H₂O) were purchased from Qingyuan Metal Materials Co., Ltd (Xingtai, China). All reagents used in this work were analytical grade without further purification.

Preparation of Co foam/TP: The Co foam/TP was synthesized via a constant current electrodeposition of -2.0 A cm⁻² for 70 s. Firstly, Ti plate (1.0 cm × 1.2 cm) was ultrasonically washed with HCl (3.0 M), ethanol, and ultrapure water to remove surface oxide and oil. The cleaned TP was subsequently masked by Teflon tape, leaving an exposed area of 1.0 cm⁻², which was then used as working electrode for electrodeposition. A saturated calomel electrode (SCE) and Pt foil were then used as reference and counter electrode. The electrodeposition was carried out in the electrolyte containing 0.2 M CoCl₂·6H₂O and 2.0 M NH₄Cl. The formed Co foam/TP were thoroughly rinsed with UP water and kept under UP water for ~1 h to completely remove residual traces of electrolyte (particularly NH₄⁺ ions).

Preparation of Co film/TP: For the control sample, Co film/TP was prepared as followed. Firstly, Co powder was scraped off the electrodeposited Co foam/TP for removal of the 3D porous foam structure. Then, Co powder was mixed with isopropanol

and 5 wt% Nafion to form the catalyst ink by 30 min ultrasonication. Finally, the Co film/TP was obtained by dropping the prepared ink onto a cleaned TP ($0.5 \times 0.5 \text{ cm}^2$) with a loading mass of about 2.36 mg cm⁻².

Characterizations: XRD data were acquired from a LabX XRD-6100 X-ray diffractometer with a Cu Kα radiation (40 kV, 30 mA) of wavelength 0.154 nm (SHIMADZU, Japan). SEM images were collected on a GeminiSEM 300 scanning electron microscopy (ZEISS, Germany) at an accelerating voltage of 5 kV. TEM images were acquired on a HITACHI H-8100 electron microscopy (Hitachi, Tokyo, Japan) operated at 200 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. The absorbance data of spectrophotometer was measured on UV-vis spectrophotometer (SHIMADZU UV-2700). Gaseous products from nitrate reduction reaction were determined by gas chromatography (GC) with SHIMADZU GC-2014 gas chromatograph.

Electrochemical measurements: All electrochemical measurements were carried on the CHI660E electrochemical workstation (Shanghai, Chenhua) using a standard threeelectrode setup. Electrolyte solution was Ar-saturated of 0.1 M NaOH with 0.1 M NO₃⁻, using Co foam/TP, Co film/TP, or TP as working electrode, a graphite rod as the counter electrode, and a Hg/HgO as the reference electrode. We use an H-type electrolytic cell separated by a Nafion 117 membrane which was protonated by boiling in ultrapure water, H₂O₂ (5%) aqueous solution and 0.5 M H₂SO₄ at 80 °C for another 2 h, respectively. Unless otherwise specified, the potentials reported in our work were converted to reversible hydrogen electrode via calibration with the following equation: E (RHE) = E (Hg/HgO) + (0.098 + 0.0591 × pH) V and the presented current density was normalized to the geometric surface area.

Determination of NH₃: The NH₃ concentration in the solution was determined by colorimetry using the indophenol blue method.¹ In detail, 2.0 mL of the solution after reaction (the obtained electrolyte was diluted 40 times), and 2.0 mL of 1.0 M NaOH

coloring solution containing 5% salicylic acid and 5% sodium citrate. Then, 1.0 mL oxidizing solution of 0.05 M NaClO and 0.2 mL catalyst solution of C₅FeN₆Na₂O (1 wt%) were added to the above solution. After standing in the dark for 2 h, the UV-vis absorption spectra were measured. The concentration of NH₃ was identified using the absorbance at a wavelength of 655 nm. The concentration-absorbance curve was calibrated using the standard NH₄Cl solution with NH₃ concentrations of 0.0, 0.2, 0.5, 1.0, 2.0, and 5.0 ppm in 0.1 M NaOH solution. The fitting curve (y = 0.41893 x + 0.04851, R² = 0.9999) shows good linear relation of absorbance value with NH₃ concentration.

Determination of N₂H₄: The N₂H₄ was estimated by the Watt and Chrisp method.² The color reagent was a solution of 18.15 mg mL⁻¹ of C₉H₁₁NO in the mixed solvent of HCl and C₂H₅OH (V/V: 1/10). In detail, 2.0 mL electrolyte was added into 2.0 mL color reagent for 15 min under stirring. The absorbance of such solution was measured to quantify the hydrazine yields by the standard curve of hydrazine (y = 0.68594 x + 0.04767, R² = 0.9997).

Determination of NO₂⁻: The NO₂⁻ concentration was quantitatively determined by Griess method.³ Firstly, 1.0 mL of deionized water, 1.0 mL of sample solution, and 2.0 mL of Griess reagent were sequentially added to a 10.0 mL of centrifuge tube. The absorbance at 540 nm was then measured by a UV-vis spectrophotometer after 15 min of dark incubation. The concentration-absorption spectra were calibrated using standard NaNO₂ solution with different concentration (y = 0.22429 x + 0.03511, $R^2 = 0.9999$).

Determination of N₂ and H₂: N₂ and H₂ were quantified by GC with SHIMADZU GC-2014 gas chromatograph. A GC run was initiated per 1200 s. Argon (99.999%) was used as the carrier gas. A flame ionization detector with a thermal conductivity detector (TCD) was used to quantify H₂ and N₂. The electrolyzer outlet was introduced into a condenser before being vented directly into the gas sampling loop of the gas chromatograph.

Calculations of the n_{NH3}, FE and NH₃ yield:

The amount of NH_3 (n_{NH3}) was calculated by the following equation:

$$n_{\rm NH3} = [\rm NH_3] \times \rm V$$

FE of NH₃ formation was calculated by the following equation:

$$FE = (8 \times F \times [NH_3] \times V) / (M_{NH3} \times Q) \times 100\%$$

NH₃ yield rate is calculated using the following equation:

Where F is the Faradic constant (96485 C mol⁻¹), [NH₃] is the NH₃ concentration, V is the volume of electrolyte in the anode compartment (40 mL), M_{NH3} is the molar mass of NH₃ molecule, Q is the total quantity of applied electricity; t is the electrolysis time (1 h) and A is the geometric area of working electrode (0.5 × 0.5 cm²).

Zn-NO₃⁻ battery: Co foam/TP was employed as the cathode to perform the eNO_3 -RR in a cathodic electrolyte (0.1 M NaOH with 0.1 M NO₃⁻). A polished Zn plate was set in an anodic electrolyte (1.0 M KOH), and a bipolar membrane was employed to separate the two different electrolytes. During the battery discharge process, electrochemical NO₃⁻ reduction occurs on Co foam/TP, and Zn converts to ZnO. The electrochemical reactions on each electrode can be described as follows:

Cathode: $NO_3^- + 9H^+ + 8e^- \rightarrow NH_3 + 3H_2O$ Anode: $Zn + 2OH^- \rightarrow ZnO + H_2O + 2e^-$ Overall: $9Zn + 2NO_3^- + 3H_2O \rightarrow 9ZnO + 2NH_3$

The NH₃ yield is quantified by using colorimetric methods. Power density is calculated using equation ($P = U \times I$) from the results of polarization data.

Fig. S1. (a) Low- and (b) high-magnification SEM images of bare TP.

	- 3-					Map Sum Spectrum		
cps/eV			Element	Line Type	Apparent Concentration	k Ratio	Wt%	Atomic %
			0	K series	8.83	0.02972	2.45	8.47
	2—		Со	K series	141.60	1.41604	97.55	91.53
	=		Total:				100.00	100.00
	- 1— - - 0—	[Co 0			یں ۱۰۰۰ (می) • • • • •	
	(4 6		8	keV

Fig. S2. EDX spectrum of Co foam/TP.

Fig. S3. Low- and high-magnification SEM images of Co film/TP.

Fig. S4. Low- and high-magnification SEM images of Co foam/TP with different deposition times (10-90 s).

Fig. S5. LSV curves of the Co foam/TP with different deposition times (10-90 s) in 0.1 M NaOH with 0.1 M NO_3^{-} .

Fig. S6. (a) UV-vis absorption spectra and (b) corresponding calibration curve for the calculation of NH_3 concentration.

Fig. S7. (a) UV-vis absorption spectra and (b) corresponding calibration curve for the calculation of N_2H_4 concentration.

Fig. S8. (a) UV-vis absorption spectra and (b) corresponding calibration curve for the calculation of NO_2^- concentration.

Fig. S9. LSV curves of (a) Co film/TP and (b) bare TP in 0.1 M NaOH with/without 0.1 M NO_3^{-} .

Fig. S10. LSV curves of Co foam/TP in 0.1 M PBS without and with 0.1 M NO_3^- .

Fig. S11. Chronoamperometry curves at a potential range from -0.2 V to -0.7 V.

Fig. S12. $\rm NH_3$ yields and FEs at –0.8 V and –0.9 V.

Fig. S13. Cyclic voltammetry curves for (a) Co foam/TP and (b) Co film/TP in the double layer region at different scan rates of 30, 40, 50, 60, and 70 mV s⁻¹.

Fig. S14. UV-vis absorption spectra of N_2H_4 detection.

Fig. S15. NH_3 yields and FEs during the alternating cycle tests between NO_3^- -containing and NO_3^- -free 0.1 M NaOH at -0.4 V.

Fig. S16. (a) Chronoamperometry curves, (b) corresponding UV-vis spectra of Co foam/TP for generated NH_3 , and (c) Q values during recycling tests at -0.4 V.

Fig. S17. XRD pattern of Co foam/TP after stability test.

Fig. S18. Low- and high-magnification SEM images for Co foam/TP after stability test.

Fig. S19. LSV curves of Co foam/TP in 0.1 M NaOH with 0.1 M NO_3^- before and after stability test.

Fig. S20. Open circuit voltage of the assembled $Zn-NO_3^-$ battery.

Fig. S21. (a) Chronopotentiometry curves of Co foam/TP-based $Zn-NO_3^-$ battery system and (b) corresponding UV-vis absorption spectra for electrogenerated NH₃.

Table S1. Comparison of the catalytic performances of Co foam/TP with other reported eNO₃⁻RR Co-based catalysts.

Catalyst	Electrolyte	Potential (V vs. RHE)	NH ₃ yield (μmol h ⁻¹ cm ⁻²)	FE (%)	Ref.
Co foam/TP	0.1 M NaOH (0.1 M NaNO ₃)	-0.40	600.6	96.5	This work
Co/Ti	0.05 M Na ₂ SO ₄ (1.615 mM NaNO ₃)	/	/	62.0	4
Co@NC	0.1 M NaOH (0.1 M NaNO ₃)	-0.50	503.3	96.0	5
Co ₃ O ₄ /Co	0.1 M Na ₂ SO ₄ (1000 ppm NaNO ₃)	-0.80	260.6	88.7	6
CoO NC/Graphene	1.0 M NaOH (1.0 M KNO ₃)	-0.72	/	97.8	7
Co/CoO NSA	0.1 M Na ₂ SO ₄ (3.23 mM NaNO ₃)	-0.65	194.5	93.8	8
Co ₂ B@Co ₃ O ₄ /TM	0.1 M NaOH (0.1 M NaNO ₃)	-0.70	301.8	97.0	9
Co ₃ O ₄ @NiO	0.5 M Na ₂ SO ₄ (3.23 mM NaNO ₃)	-0.70	69.0	55.0	10
CoO@NCNT/GP	0.1 M NaOH (0.1 M NaNO ₃)	-0.60	531.8	93.8	11
Fe-Co ₃ O ₄ /TM	0.1 M PBS (50 mM NaNO ₃)	-0.70	36.7	95.5	12
CoTiO _{3-x}	0.1 M NaOH (0.1 M NaNO ₃)	-1.0	858.0	92.6	13
Co-NCNT	0.1 M NaOH (0.1 M NaNO ₃)	-0.60	352.7	92.0	14
PP-Co	0.1 M NaOH (0.1 M NaNO ₃)	-0.60	1100.0	90.1	15
Co@CC	0.1 M NaOH (0.1 M NaNO ₃)	-0.80	600.0	93.4	16

References

- D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction, *Nat. Mater.*, 2013, **12**, 836–841.
- 2 G. W. Watt and J. D. Chrisp, Spectrophotometric method for determination of hydrazine, *Anal. Chem.*, 1952, **24**, 2006–2008.
- 3 L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok and S. R. Tannenbaum, Tannenbaum, Analysis of nitrate, nitrite, and [¹⁵N] nitrate in biological fluids, *Anal. Biochem.*, 1982, **126**, 131–138.
- B. Jiang, L. Han, J. Wang, C. Lu, Y. Pan, Y. Tan, C. Shuang, D. Chen and A. Li, Preparation of Co/Ti electrode by electro-deposition for aqueous nitrate reduction, *Water Reuse*, 2021, 11, 660–672.
- 5 J. Chen, T. Gong, Q. Hou, J. Li, L. Zhang, D. Zhao, Y. Luo, D. Zheng, T. Li, S. Sun, Z. Cai, Q. Liu, L. Xie, M. Wu, A. A. Alshehri and X. Sun, Co/N-doped carbon nanospheres derived from an adenine-based metal organic framework enabled high-efficiency electrocatalytic nitrate reduction to ammonia, *Chem. Commun.*, 2022, 58, 13459–13462.
- 6 F. Zhao, G. Hai, X. Li, Z. Jiang and H. Wang, Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation, *Chem. Eng. J.*, 2023, 461, 141960.
- N. C. Kani, N. H. L. Nguyen, K. Markel, R. R. Bhawnani, B. Shindel, K. Sharma,
 S. Kim, V. P. Dravid, V. Berry, J. A. Gauthier and M. R. Singh, Electrochemical reduction of nitrates on CoO nanoclusters-functionalized graphene with highest mass activity and nearly 100% selectivity to ammonia, *Adv. Energy Mater.*, 2023, 13, 2204236.
- 8 Y. Yu, C. Wang, Y. Yu, Y. Wang and B. Zhang, Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts, *Sci. China Chem.*, 2020, **63**, 1469–1476.

- 9 L. Xie, S. Sun, L. Hu, J. Chen, J. Li, L. Ouyang, Y. Luo, A. A. Alshehri, Q. Kong,
 Q. Liu and X. Sun, In situ derived Co₂B nanosheet array: a high-efficiency electrocatalyst for ambient ammonia synthesis via nitrate reduction, *ACS Appl. Mater. Interfaces*, 2022, 14, 49650–49657.
- 10 Y. Wang, C. Liu, B. Zhang and Y. Yu, Self-template synthesis of hierarchically structured Co₃O₄@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation, *Sci. China Mater.*, 2020, **63**, 2530– 2538.
- 11 Q. Chen, J. Liang, L. Yue, Y. Luo, Q. Liu, N. Li, A. A. Alshehri, T. Li, H. Guo and X. Sun, CoO nanoparticle decorated N-doped carbon nanotubes: a high-efficiency catalyst for nitrate reduction to ammonia, *Chem. Commun.*, 2022, **58**, 5901–5904.
- 12 P. Wei, J. Liang, Q. Liu, L. Xie, X. Tong, Y. Ren, T. Li, Y. Luo, N. Li, B. Tang, A. M. Asiri, M. S. Hamdy, Q. Kong, Z. Wang and X. Sun, Iron-doped cobalt oxide nanoarray for efficient electrocatalytic nitrate-to-ammonia conversion, *J. Colloid Interface Sci.*, 2022, **615**, 636–642.
- 13 X. Fan, J. Liang, L. Zhang, D. Zhao, L. Yue, Y. Luo, Q. Liu, L. Xie, N. Li, B. Tang, Q. Kong, X. Sun, Enhanced electrocatalytic nitrate reduction to ammonia using plasma-induced oxygen vacancies in CoTiO_{3-x} nanofiber, *Carbon Neutralization*, 2022, 1, 6–13.
- J. Chen, Q. Zhou, L. Yue, D. Zhao, L. Zhang, Y. Luo, Q. Liu, N. Li, A. A. Alshehri,
 M. S. Hamdy, F. Gong and X. Sun, Co-NCNT nanohybrid as a highly active catalyst for the electroreduction of nitrate to ammonia, *Chem. Commun.*, 2022, 58, 3787–3790.
- 15 Q. Chen, J. Liang, Q. Liu, K. Dong, L. Yue, P. Wei, Y. Luo, Q. Liu, N. Li, B. Tang, A. A. Alshehri, M. S. Hamdy, Z. Jiang and X. Sun, Co nanoparticle-decorated pomelo-peel-derived carbon enabled high-efficiency electrocatalytic nitrate reduction to ammonia, *Chem. Commun.*, 2022, **58**, 4259–4262.

16 T. Xie, X. Li, J. Li, J. Chen, S. Sun, Y. Luo, Q. Liu, D. Zhao, C. Xu, L. Xie and X. Sun, Co nanoparticles decorated corncob-derived biomass carbon as an efficient electrocatalyst for nitrate reduction to ammonia, *Inorg. Chem.*, 2022, **61**, 14195–14200.