Supporting Information

C₂O₄²⁻-templated cage-shaped Ln₂₈(Ln=Gd, Eu) nanoclusters

with magnetocaloric effect and luminescence

Qin Wang,¹ Sheng-Hui Lu,¹ Ling-Xi Xu, ² Ji-Lei Wang,¹ Ya-Ting Yu,¹ Xu Bai,¹ Hua Mei,¹ and Yan Xu^{1,*}

¹College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China. ²College of software, Jilin University, Changchun 130012, P. R. China.

Corresponding Author* yanxu@njtech.edu.cn

Experimental Section

Fig. S1 The images of (a) Gd_{28} , (b) Eu_{28} under optical microscope.

Structure

Fig. S2 Ball-and-stick view of (a) $[Gd_3(\mu_3-OH)_2]^{7+}$ unit; (b) $C_2O_4^{2-}$ anion; (c) $[Gd_4(\mu_3-OH)_4]^{8+}$ unit; (d) $[Gd_{12}(\mu_3-OH)_8(C_2O_4)_6]^{16+}$ subunit; (e) $[Gd_{16}(\mu_3-OH)_{16}(C_2O_4)_6]^{20+}$ subunit; (f) $[Gd_{28}(C_2O_4)_6(\mu_3-OH)_{36}(\mu_2-OH)_2]^{34+}$.

Fig. S3 The metal skeleton of Gd₂₈.

Fig. S4 Representation of Gd_{28} based on (a) Gd_3 and Gd_4 unit (b) $C_2O_4^{2-}$ anionic templates.

Gd5

Gd6

Gd7

Gd8

Gd14

Gd18

Gd22

Gd11

Gd9

Gd21

Gd25

Gd12

Gd20

Gd16

Gd23

Gd27

Gd19

F

Gd28

ig. S5 Coordination environments of 28 different Gd^{III} ions.

Gd26

	Octagon	Heptagonal	Hexagonal	Cube	Square	Triangular	Johnson-	Johnson-	Johnson-	Biaugmented	Snub	Triakis	Elongated
		pyramid	bipyramid		antiprism	dodecahedron	Gyrobifastigium	Elongated	Biaugmented	trigonal	diphenoid	tetrahedron	trigonal
							J26	triangular	trigonal	prism	J84		bipyramid
								bipyramid	prism J50				
								J14					
Gd16	31.57244	23.29306	16.96220	10.17181	2.45775	0.31430	13.56307	29.40452	2.82168	2.18982	2.49707	11.00914	25.32895
Gd8	58.09215	51.99503	46.87071	45.98718	49.82011	48.36206	47.60483	43.10357	45.00656	46.39710	48.22951	46.33355	47.12274
Gd12	28.99820	23.67745	16.13101	10.46344	2.14151	0.80577	14.23738	28.22626	2.62350	1.80749	3.22529	11.25575	23.15551
Gd3	30.70519	23.31967	14.41076	9.57658	2.70619	0.83199	13.80598	28.11689	2.72063	1.93110	3.45059	10.33901	22.96524
Gd14	44.78659	38.57630	43.27928	43.26096	43.54551	43.14939	38.00744	33.10107	38.15059	38.84904	35.47430	39.42785	40.07003
Gd6	28.76705	24.16349	16.28630	9.85993	1.92066	0.64540	14.86619	28.79118	3.04664	2.11437	3.47886	10.46608	23.58522
Gd26	30.23454	24.08236	16.88696	9.88705	2.18320	0.40640	12.79257	29.24734	2.24312	1.81316	2.10115	10.41697	24.58076
Gd27	29.55541	23.61301	15.88942	10.15675	1.91876	1.04234	13.37332	27.23162	1.60927	1.19297	2.81509	10.74322	22.91530
Gd28	22.69508	23.43771	16.80728	11.34599	1.11197	3.14065	14.44132	25.21684	2.93171	2.48548	5.11699	12.05596	20.67076
Gd11	31.37728	22.82900	15.49588	9.77657	3.18784	0.74079	14.99344	28.79753	3.10827	1.98741	3.95448	10.22424	23.71704
Gd5	27.85828	23.95382	15.83208	9.41022	1.73981	0.94513	15.27388	28.08186	2.87018	1.81651	4.02845	9.96920	22.42156
Gd22	30.96602	22.64395	13.98008	11.60034	4.85064	3.66092	9.58619	24.59086	2.85437	1.84665	5.21051	12.40456	19.29079
Gd25	30.19222	23.35258	17.05882	13.34342	3.60991	2.32018	12.88298	25.75615	1.75428	1.00856	3.16702	13.47305	21.45386

Table S1. The CShM (Continuous Shape Measures) values of eight-coordination of Gd^{III} ions in Gd_{28} .

	Enneagon	Octagonal pyramid	Heptagonal bipyramid	Johnson triangular	Capped cube J8	Spherical- relaxed	Capped square	Spherical capped	Tricapped trigonal prism J51trigonal	Spherical tricapped	Tridiminished icosahedron	Hula-hoopT	Muffin
				Cupora 55		capped cube	J10 J26	antiprismJ1	prism 0.0	prism	000		
Gd23	36.67895	22.44078	19.19049	16.16553	9.69815	9.17781	1.36254	1.00447	1.78258	0.99039	12.83151	11.17741	1.30642
Gd20	36.06425	21.80207	18.99208	16.37753	9.12616	8.63518	1.40016	1.06496	2.37189	0.85709	12.19337	11.08981	1.60496
Gd9	37.03736	21.08640	17.69969	16.65952	10.21308	8.70924	2.57693	1.29014	3.16355	0.62058	11.90255	11.58504	1.55821
Gd4	35.94429	22.97067	17.11069	14.99922	7.84317	7.09962	1.72506	1.27777	2.95977	1.69789	10.92071	9.86830	1.78316
Gd19	36.67920	22.17129	17.42200	16.72087	8.69130	7.72734	2.30843	1.39112	2.80759	0.99565	13.26578	10.07724	1.41096
Gd21	43.02343	33.06960	31.79243	23.23462	25.04451	25.31343	20.65182	20.86608	20.96080	21.09692	26.97353	28.19029	21.35039
Gd13	63.28090	58.25949	56.63662	54.42950	49.61953	55.67917	47.05175	53.83618	48.30373	54.25396	54.55605	55.00210	53.06404
Gd24	33.82836	21.63958	16.69124	14.96467	8.84803	8.05750	1.70199	1.06731	3.08628	1.80431	12.69559	9.80164	1.50842
Gd10	36.17768	23.42041	17.23778	14.64841	7.58813	6.91348	1.38227	0.97006	3.32150	2.07949	10.70363	11.31211	1.70320
Gd7	33.55453	22.42499	18.09518	13.58033	9.77277	8.83270	1.76147	0.91942	1.77412	1.31445	12.61838	11.48950	1.43830
Gd15	34.84055	20.93221	17.16954	15.83306	10.65338	9.38573	2.11519	1.21141	3.34717	1.42565	11.05302	10.26849	1.26485
Gd18	35.39423	22.54196	19.69406	15.41679	11.25483	10.04386	1.65672	0.70204	3.11966	1.83977	11.70083	10.76745	1.34002
Gd2	34.73584	22.06043	17.43797	13.90846	10.02244	9.09152	1.82951	1.14580	1.97125	1.18065	12.01613	12.22453	1.50683
Gd1	34.34913	21.82234	17.31980	13.61914	9.42099	8.52795	1.52918	0.89866	1.93312	1.31582	11.98333	11.92160	1.50423
Gd17	34.25488	21.19019	16.73164	15.88556	8.48350	7.75421	2.97965	2.55570	3.43371	2.14413	12.77926	8.73959	2.30066

Table S2. The CShM (Continuous Shape Measures) values of nine-coordination of Gd^{III} ions in Gd_{28} .

PXRD pattern

Fig. S6 The PXRD pattern of Gd_{28} and Eu_{28} at $2\theta = 5-20^{\circ}$.

IR spectrum

Fig. S7 The IR spectrum of Gd₂₈.

Fig. S8 The IR spectrum of Eu₂₈.

As presented in Fig. S7-8, the IR spectra patterns of Gd_{28} and Eu_{28} at 4000-400 cm⁻¹ are almost the same. So only the infrared spectrum of Gd_{28} is discussed in detail. The broad and strong absorption peak in the field of 3441 cm⁻¹ ascribes to the -OH of H₂O molecules and the characteristic peak at 2926 cm⁻¹ belongs to the signature of v(C-H), while the stretching vibration peak at 1663 cm⁻¹ reveal the presence of the pyridine ring. In addition, the characteristic peaks of symmetric and antisymmetric stretching vibration on -COO⁻ groups appear at 1411 cm⁻¹ and 1544 cm⁻¹. The peak at 867-681 cm⁻¹ corresponds to the characteristic peak of the v(Gd-O). The mentioned infrared peaks above are consistent with those of lanthanide clusters previously reported in the literature.

Fig. S10 TGA curve of Eu_{28.}

TG

EDS

Fig. S11 The EDS measurement of compound Gd₂₈.

Fig. S12 The EDS measurement of compound Eu₂₈.

Luminescence of Eu₂₈

Fig. S13 The solid-state UV-absorption spectra in the wavelength range 250-800 nm for Eu_{28} .

Fig. S14 The solid-state photoluminescence quantum yield for Eu₂₈.

Magnetic property of Gd₂₈

Compound	- $\Delta S_{ m m}^{ m max}$	Т	ΔH	Ref.
	(J kg ⁻¹ K ⁻¹)	(K)	(T)	
$\{Gd_{28}\}$	37.5	2.0	7.0	This work
$\{Gd_{27}\}$	41.8	2.0	7.0	1
$\{Gd_{32}\}$	43.0	2.0	7.0	2
$\{Gd_{36}\}$	39.7	2.5	7.0	3
$\{\mathbf{Gd_{37}}\}$	38.7	2.0	7.0	4
$\{Gd_{38}\}$	37.9	1.8	7.0	5
$\{\mathbf{Gd}_{60}\}$	48.0	2.0	7.0	6
$\{Gd_{104}\}$	46.9	2.0	7.0	7
$\{Gd_{140}\}$	38.0	2.0	7.0	8
$\{Gd_{23}Ni_{20}\}$	38.1	2.0	7.0	9
$\{Gd_{36}Ni_{12}\}$	36.3	3.0	7.0	10
0 ^{II} 9C0 ^{III} Gd42}	41.26	2.0	7.0	11
o ^{II} Co ^{III} 6Gd ₁₈ }	36.90	2.0	7.0	12

Table S3 Summary $-\Delta S_m$ for some reported 4f and 3d-4f clusters

Compound	Formula	Dimensionality	Ref.
Ln	$[Ln(IN)(CO_3)(H_2O)] (Ln = La, Eu)$	2D	13
Ln	$[Ln(IN)_2L]$ (Ln = Eu, Tb, Er, Dy, Ho, Gd, La, L = OCH ₂ CH ₂ OH)	1D	14
Ln	$_{L}$ - $_{D}$ -{Ln[IN][HIN][CH ₂ OCH ₂ O]} _n (Ln = Gd, Dy)	1D	15
Ln ₃	$[Ln_3(IN)_2(bdc)_{3.5}(H_2O)_3] \cdot 0.5H_2O$ (Ln = Er, Ho)	3D	16
Ln ₃	$[Ln_3(IN)_3(\mu_3-OH)(HIDA)(IDA)_2]_n (Ln = Eu, Sm)$	2D	17
Ln ₄	${[Nd_4(ox)_4(NO_3)_2(OH)_2(H_2O)_2] \cdot 5H_2O}n$	3D	18
Ln ₈	$[Ln_8(IN)_{14}(\mu_3-OH)_8(\mu_2-OH)_2(H_2O)_8]$ ·xH ₂ O (Ln = 1-Gd, Ln = 2-Dy, Ln = 3-Eu).	0D	19
Ln ₁₈	$\frac{\{[Gd_{18}(IN)_{20}(HCOO)_{8}(\mu_{6}-O)(\mu_{3}-OH)_{24}(H_{2}O)_{4}]\cdot 4H_{2}O\}n}{\{[Eu_{18}(IN)_{16}(HCOO)_{8}(CH_{3}COO)_{4}(\mu_{6}-O)(\mu_{3}-OH)_{24}(H_{2}O)_{4}]\cdot 5H_{2}O\}_{n}}$	3D	20
Ln ₂₆	$[Ho_{26}(IN)_{28}(CH_{3}COO)_{4}(CO_{3})_{10}(OH)_{26}(H_{2}O)_{18}] \cdot 20H_{2}O$ $[Er_{26}(IN)_{29}(CH_{3}COO)_{3}(CO_{3})_{10}(OH)_{26}(H_{2}O)_{19}] \cdot 26H_{2}O$	0D	21
Ho ₄₈	$K_{2}[Ho_{48}(IN)_{46}(\mu_{3}\text{-}OH)_{84}(\mu_{4}\text{-}OH)_{4}(\mu_{5}\text{-}O)_{2}(OAc)_{4}(H_{2}O)_{14}(CO_{3})Br_{2}]\cdot 2HIN\cdot 20H_{2}O$	2D	22
Dy ₃₀	$Dy_{30}I(IN)_{41}(\mu_3-OH)_{24}(\mu_3-O)_6(NO_3)_9(OH)_3(H_2O)_{38}$		
Dy ₁₀₄	$Dy_{104}I_4(IN)_{125}(\mu_3-OH)_{80}(\mu_3-O)_{24}(NO_3)_{36}(OH)_{19} \cdot (H_2O)_{167}$	0D	23

Table S4 Summary of the reported lanthanide clusters with isonicotinic ligand

Gd(1)-O(39)	2.345(9)	Gd(15)-O(13)	2.377(9)
Gd(1)-O(27)	2.599(10)	Gd(15)-O(28)	2.376(10)
Gd(2)-O(91)	2.388(10)	Gd(16)-O(44)	2.384(9)
Gd(2)-O(3)	2.393(10)	Gd(16)-O(94)	2.392(11)
Gd(3)-O(4)	2.339(9)	Gd(17)-O(54)	2.366(10)
Gd(3)-O(16)	2.351(9)	Gd(17)-O(77)	2.767(17)
Gd(4)-O(6)	2.374(9)	Gd(18)-O(62)	2.375(9)
Gd(4)-O(32)	2.402(10)	Gd(18)-O(19)	2.580(10)
Gd(5)-O(46)	2.345(9)	Gd(19)-O(67)	2.352(10)
Gd(5)-O(16)	2.353(9)	Gd(19)-O(5W)	2.628(12)
Gd(6)-O(50)	2.333(10)	Gd(20)-O(6)	2.345(9)
Gd(6)-O(8)	2.357(9)	Gd(20)-O(87)	2.353(11)
Gd(7)-O(10W)	2.360(16)	Gd(21)-O(93)	2.362(13)
Gd(7)-O(63)	2.370(11)	Gd(21)-O(37)	2.371(9)
Gd(8)-O(33)	2.321(9)	Gd(22)-O(77)	2.905(19)
Gd(8)-O(10)	2.330(9)	Gd(22)-O(13)	2.341(10)
Gd(9)-O(45)	2.403(9)	Gd(23)-O(65)	2.354(10)
Gd(9)-O(31)	2.410(9)	Gd(23)-O(11)	2.354(10)
Gd(10)-O(5)	2.379(9)	Gd(24)-O(111)	2.317(12)
Gd(10)-O(107)	2.384(13)	Gd(24)-O(37)	2.395(10)
Gd(11)-O(46)	2.346(9)	Gd(25)-O(65)	2.312(11)
Gd(11)-O(25W)	2.367(11)	Gd(25)-O(67)	2.357(11)
Gd(12)-O(31)	2.342(10)	Gd(26)-O(75)	2.331(11)
Gd(12)-O(99)	2.367(11)	Gd(26)-O(104)	2.334(12)
Gd(13)-O(6)	2.362(9)	Gd(27)-O(103)	2.322(15)
Gd(13)-O(45)	2.363(9)	Gd(27)-O(112)	2.331(15)
Gd(14)-O(102)	2.330(13)	Gd(28)-O(95)	2.317(18)
Gd(14)-O(8)	2.357(9)	Gd(28)-O(46)	2.385(9)
O(39)-Gd(1)-O(79)	87.0(4)	O(13)-Gd(15)-O(28)	139.9(3)
O(39)-Gd(1)-O(3)	140.5(3)	O(13)-Gd(15)-O(109)	75.3(4)
O(91)-Gd(2)-O(3)	84.2(4)	O(94)-Gd(16)-O(83)	144.6(4)
O(91)-Gd(2)-O(12)	141.7(4)	O(11)-Gd(16)-O(83)	97.6(4)
O(4)- $Gd(3)$ - $O(16)$	74.2(3)	O(73)-Gd(17)-O(43)	121.2(4)
O(4)-Gd(3)-O(5)	143.8(3)	O(13)-Gd(17)-O(43)	141.7(3)
O(6)-Gd(4)-O(32)	90.3(3)	O(62)-Gd(18)-O(11W)	69.9(4)
O(6)-Gd(4)-O(5)	139.4(3)	O(62)-Gd(18)-O(72)	128.7(5)
O(46)-Gd(5)-O(16)	71.1(3)	O(67)-Gd(19)-O(49)	125.4(3)
O(46)-Gd(5)-O(39)	143.6(3)	O(71)-Gd(19)-O(49)	145.9(4)
O(50)-Gd(6)-O(8)	72.0(3)	O(6)-Gd(20)-O(87)	87.2(4)
O(50)-Gd(6)-O(85)	68.8(4)	O(6)-Gd(20)-O(54)	130.2(3)
O(63)-Gd(7)-O(35)	144.7(4)	O(37)-Gd(21)-O(67)	137.1(3)
O(1)-Gd(7)-O(35)	77.2(3)	O(66)-Gd(21)-O(67)	70.0(4)

Table S5 Selected bond lengths (Å) and bond angles (°) of main metal atoms for Gd_{28} .

O(33)-Gd(8)-O(10)	73.3(3)	O(97)-Gd(22)-O(40)	82.9(5)
O(33)-Gd(8)-O(1)	145.0(3)	O(13)-Gd(22)-O(40)	140.9(3)
O(45)-Gd(9)-O(31)	145.2(3)	O(11)-Gd(23)-O(43)	74.0(3)
O(45)-Gd(9)-O(33)	144.4(3)	O(65)-Gd(23)-O(92)	84.9(4)
O(5)-Gd(10)-O(29W)	75.0(3)	O(111)-Gd(24)-O(37)	82.0(4)
O(107)-Gd(10)-O(29W)	77.8(4)	O(111)-Gd(24)-O(65)	134.5(4)
O(25W)-Gd(11)-O(4)	123.0(3)	O(65)-Gd(25)-O(67)	141.5(4)
O(28)-Gd(11)-O(4)	139.1(3)	O(65)-Gd(25)-O(81)	95.1(4)
O(31)-Gd(12)-O(99)	95.2(4)	O(75)-Gd(26)-O(104)	143.5(4)
O(31)-Gd(12)-O(37)	143.5(3)	O(75)-Gd(26)-O(31)	91.4(4)
O(6)-Gd(13)-O(59)	128.9(3)	O(50)-Gd(27)-O(8)	68.7(3)
O(45)-Gd(13)-O(59)	67.6(3)	O(114)-Gd(27)-O(8)	141.7(4)
O(102)-Gd(14)-O(49)	144.9(4)	O(46)-Gd(28)-O(16)	68.8(3)
O(8)-Gd(14)-O(49)	68.9(3)	O(8W)-Gd(28)-O(16)	140.8(8)

References

- X. Y. Zheng, J. B. Peng, X. J. Kong, L. S. Long and L. S. Zheng, Mixed-anion templated cage-like lanthanide clusters: Gd₂₇ and Dy₂₇, *Inorg. Chem. Front.*, 2016, 3, 320-325.
- 2 L. Qin, G. J. Zhou, Y. Z. Yu, H. Nojiri, C. Schroder, R. E. P. Winpenny and Y. Z. Zheng, Topological Self-Assembly of Highly Symmetric Lanthanide Clusters: A Magnetic Study of Exchange-Coupling "Fingerprints" in Giant Gadolinium(III) Cages, J. Am. Chem. Soc., 2017, 139, 16405-16411.
- 3 M. Wu, F. Jiang, X. Kong, D. Yuan, L. Long, S. A. Al-Thabaiti and M. Hong, Two polymeric 36-metal pure lanthanide nanosize clusters, *Chem. Sci.*, 2013, 4, 3104-3109.
- 4 Y. Zhou, X. Y. Zheng, J. Cai, Z. F. Hong, Z. H. Yan, X. J. Kong, Y. P. Ren, L. S. Long and L. S. Zheng, Three Giant Lanthanide Clusters Ln₃₇ (Ln = Gd, Tb, and Eu) Featuring A Double-Cage Structure, *Inorg. Chem.*, 2017, **56**, 2037-2041.
- 5 F. S. Guo, Y. C. Chen, L. L. Mao, W. Q. Lin, J. D. Leng, R. Tarasenko, M. Orendac, J. Prokleska, V. Sechovsky and M. L. Tong, Anion-templated assembly and magnetocaloric properties of a nanoscale {Gd₃₈} cage versus a {Gd₄₈} barrel, *Chem. Eur. J.*, 2013, **19**, 14876-14885.
- 6 X. M. Luo, Z. B. Hu, Q. F. Lin, W. Cheng, J. P. Cao, C. H. Cui, H. Mei, Y. Song and Y. Xu, Exploring the Performance Improvement of Magnetocaloric Effect Based Gd-Exclusive Cluster Gd₆₀, J. Am. Chem. Soc., 2018, **140**, 11219-11222.
- 7 J. B. Peng, X. J. Kong, Q. C. Zhang, M. Orendac, J. Prokleska, Y. P. Ren, L. S. Long, Z. Zheng and L. S. Zheng, Beauty, symmetry, and magnetocaloric effect-four-shell keplerates with 104 lanthanide atoms, *J. Am. Chem. Soc.*, 2014, **136**, 17938-17941.
- 8 X. Y. Zheng, Y. H. Jiang, G. L. Zhuang, D. P. Liu, H. G. Liao, X. J. Kong, L. S. Long and L. S. Zheng, A Gigantic Molecular Wheel of {Gd₁₄₀}: A New Member of the Molecular Wheel Family, *J. Am. Chem. Soc.*, 2017, **139**, 18178-18181.
- 9 N. F. Li, Q. Wang, J. N. Li, Y. T. Yu and Y. Xu, Two SiO₄⁴⁻-Templated Ln₂₃Ni₂₀ Clusters with Magnetic Cooling and Stability, *Inorg. Chem.*, 2022, **61**, 7180-7187.
- 10 J. B. Peng, Q. C. Zhang, X. J. Kong, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng and Z. P. Zheng, A 48-Metal Cluster Exhibiting a Large Magnetocaloric Effect, *Angew. Chem. Int. Ed.*, 2011, **50**, 10649-10652.
- 11 J. B. Peng, Q. C. Zhang, X. J. Kong, Y. Z. Zheng, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng and Z. Zheng, High-nuclearity 3d-4f clusters as enhanced magnetic coolers and molecular magnets, *J. Am. Chem. Soc.*, 2012, **134**, 3314-3317.
- 12 H. J. Lun, M. H. Du, D. H. Wang, X. J. Kong, L. S. Long and L. S. Zheng, Double-Propeller-like Heterometallic 3d-4f Clusters Ln₁₈Co₇, *Inorg. Chem.*, 2020, **59**, 7900-7904.
- 13 L. Huang, L. Han, D. Zhu, L. Chen and Y. Xu, Hydrothermal synthesis, crystal structure and luminescence of two new 2D coordination polymers Ln(IN)(CO₃)(H₂O) (Ln=La, Eu) constructed by interesting flat lanthanide carbonate layers, *Inorg. Chem. Commun.*, 2012, **21**, 80-83.
- 14 Y. Liu, Y. Zhang, G. H. Hu, S. Zhou, R. Fan, Y. Yang and Y. Xu, A Series of

Lanthanide Metal-Organic Frameworks with Interesting Adjustable Photoluminescence Constructed by Helical Chains, *Chem. Eur. J.*, 2015, **21**, 10391-10399.

- 15 N. F. Li, J. Ji, W. Jiang, J. P. Cao, Y. M. Han, P. Yuan and Y. Xu, Chirality and Magnetic Properties of One-dimensional Ln (Ln = Gd, Dy) Polymers, *Z. Anorg. Allg. chem.*, 2020, **646**, 463-468.
- 16 L. Chen, L. Huang, D. Zhang, D. Yan, C. Wang, T. Qin, D. Zhu and Y. Xu, Hydrothermal synthesis, crystal structure and properties of two new coordination polymers structured by two mixed ligands and strict quadrangular {Ln₃}₈ Units (Ln = Er and Ho), *Inorg. Chem. Commun.*, 2012, **21**, 182-185.
- 17 W. Xu, C J. Zhang, H. Wang and Y. Wang, Two Novel Two-Dimensional Lanthanide(III) Coordination Polymers Constructed from Isonicotinic Acid and Iminodiacetic Acid: Synthesis, Structure, and Luminescence Properties, J. Clust. Sci., 2017, 28, 2005-2015.
- 18 J. Y. Lu, J. Macias, J. Lu and J. E. Cmaidalka, An Unforeseen Chemical Rearrangement of Pyridine carboxylate to Oxalate under Hydrothermal Conditions Afforded the First Oxalato and Isonicotinato Mixed-Ligand Guest-Inclusion Coordination Polymer, *Cryst. Growth Des.*, 2002, 2, 485-487.
- 19 J. N. Li, N. F. Li, J. L. Wang, X. M. Liu, Q. D. Ping, T. T. Zang, H. Mei and Y. Xu, A new family of boat-shaped Ln8 clusters exhibiting the magnetocaloric effect and slow magnetic relaxation, *Dalton Trans.*, 2021, 50, 13925-13931.
- 20 Q. Wang, Y. T. Yu, J. L. Wang, J. N. Li, N. F. Li, X. Fan and Y. Xu, Two Windmill-Shaped Ln₁₈ Nanoclusters Exhibiting High Magnetocaloric Effect and Luminescence, *Inorg. Chem.*, 2023, **62**, 3162-3169.
- 21 L. Chen, L. Huang, C. Wang, J. Fu, D. Zhang, D. Zhu and Y. Xu, Hydrothermal synthesis, structure, and properties of two new nanosized Ln₂₆ (Ln = Ho, Er) clusters, *J. Coord. Chem.*, 2012, 65, 958-968.
- 22 L. Chen, J. Y. Guo, X. Xu, W. W. Ju, D. Zhang, D. R. Zhu and Y. Xu, A novel 2-D coordination polymer constructed from high-nuclearity waist drum-like pure Ho₄₈ clusters, *Chem. Commun.*, 2013, **49**, 9728-9730.
- 23 X. Gu and D. Xue, Surface modification of high-nuclearity lanthanide clusters: Two tetramers constructed by cage-shaped {Dy₂₆} clusters and isonicotinate linkers, *Inorg. Chem.*, 2007, **46**, 3212-3216.