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Experimental
1. General methods and procedures

Ligand 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene (tpeb) were prepared according to the
literature methods.5! Other chemical reagents were directly available from commercial
sources and used without further purification. Powder X-ray diffraction (PXRD)
patterns were acquired on a PANalytical X’Pert PRO MPD system (PW3040/60) using
Cu Ka radiation (A = 1.5406 A) from 3° to 50° with a scanning step size of 0.02°. NMR
spectra were recorded on BRUKER AVANCE III HD (400 MHz) at room temperature
and referenced to the residual protonated solvent for NMR spectra. Proton chemical
shift 6 H=7.26 (CDCI3) and & H = 2.50 (ds-DMSO) ppm are reported relative to the
solvent residual peak. Elemental analyses (C, H and N) were performed on a Carlo-
Erba CHNO-S microanalyzer. Fourier-transform infrared (IR) spectra of the solid
samples in the range 400-4000 cm' were recorded on a Specode 75.
Thermogravimetric analyses (TGA) were performed on a PerkinElmer TGA 4000
under a nitrogen atmosphere at a heating rate of 10 °C min~'. UV—vis spectra were
recorded on a Varian Cary-50 UV—Vis spectrophotometer.
2. Synthesis
2.1 Synthesis of 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene (tpeb)

Br NS
k,CO5 Pd(PPhs)Cl,

+
| DMF 120 °C
7
Br Br N

Adapted from a literature procedure,’! ligand tpeb was synthesized as follows. N,N-
Dimethylformamide (25 mL) was added to a mixture of 1,3,5-tribromobenzene (5.666
g, 18 mmol), 4-vinylpyridine (6.750 g, 60 mmol), KoCO3 (7.463 g, 54 mmol),
bis(triphenylphosphine)palladium(IT)dichloride (0.384 g, 0.54 mmol) in a 100 mL
round-bottom flask at room temperature. The reaction mixture was heated to 120 °C
(external temperature of oil bath) under N> atmosphere and stirred for 48 h. After
cooling to ambient temperature, N,N-Dimethylformamide was removed under reduced
pressure by evaporation and the solid after evaporation was extracted with CH>Clo. The
organic layer was separated and the aqueous layer was washed with CH2Cl.. The
combined organic layers were dried over Mg>SO4 and concentrated in vacuo. The
resulting brown-yellow powder was recrystallized with anhydrous diethyl ether and
filtered to give the yellow powder as the pure tpeb ligand with a yield of 82%. 'H NMR
(400 MHz, CDCl3, ppm): 6 8.62 (dd, J = 4.6, 1.6 Hz, 6H), 7.66 (s, 3H), 7.40 (dd, J =
4.6, 1.6 Hz, 6H), 7.34 (d, J=16.0 Hz, 3H), 7.12 (d, J= 16.0 Hz, 3H) (Fig. S1).

2.2 Synthesis of {[Zn(1,2-chdc)(tpeb)]-H2.0}, (CP1)

To a Pyrex glass tube was loaded Zn(NO3)>-:6H>O (6.0 mg, 0.02 mmol), tpeb (7.7
mg, 0.02 mmol), 1,2-chdc (3.4 mg, 0.02 mmol), MeCN (0.5 mL) and H>O (1 mL). The
tube was sealed and heated in an oven at 150 °C for 24 h, and then cooled to ambient
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temperature to form orange rhomboid crystals of CP1, which were washed with ethanol
and H>O and dried in air (63% yield based on Zn). Anal. calcd. (%) for C35sH33N305Zn:
C, 65.52, H, 5.14, N, 6.55; found: C, 65.68, H, 5.07, N, 6.71. FT-IR (cm™): 3034 (m),
1737 (m), 1597 (s), 1502 (w), 1429 (m), 1379 (m), 1278 (w), 1224 (m), 1024 (m), 966
(m), 846 (m), 731 (w), 680 (m).

2.3 Synthesis of {[Zn(1,3-chdc)(tpeb)]-H20}, (CP2)

After a Pyrex glass tube was charged with a mixture of Zn(NO3)2-6H>O (6.0 mg,
0.02 mmol), tpeb (3.9 mg, 0.01 mmol) and 1,3-chdc (3.4 mg, 0.02 mmol) in H>O (1
mL) and DMF (0.5 mL), 0.1 mL of 0.1 M HNOj solution was injected. The tube was
then sealed and heated in an oven to 120 °C at the rate of 1 °C min™! and then reacted
for 24 h. After it was cooled to ambient temperature at the rate of 10 °C h™!, yellow rod-
shaped crystals of CP2 were formed and collected by filtration, washed with H,O, and
dried in air (78% based on tpeb). Anal. calcd. (%) for C35H33N30s5Zn: C, 65.52, H, 5.14,
N, 6.55; found: C, 65.39, H, 5.19, N, 6.58. FT-IR (cm™"): 3030 (m), 1737 (m), 1635 (w),
1595 (s), 1502 (w), 1410 (m), 1217 (m), 1018 (w), 962 (m), 842 (m), 798 (m), 732 (W),
677 (m).

2.4 Synthesis of [Zn (1,4-chdc)(tpeb)]. (CP3)

Zn(NO3)2-6H>0 (59.5 mg, 0.2 mmol), 1,4-chdc (34.4 mg, 0.2 mmol) and tpeb (38.7
mg, 0.1 mmol) were mixed into a 35 ml Teflon-sealed autoclave, then DMA (5 mL),
H>0O (10 mL) and 0.25 mL of 0.1 M HNOs solution were added. The autoclave was
sealed and heated in an oven to 120 °C at the rate of 1 °C min™ and then reacted for 24
h. After it was cooled to ambient temperature at the rate of 10°C h™!, the yellow flake
crystals of CP3 were isolated and washed with DMA and dried in air (84% based on
tpeb). Anal. calcd. (%) for C3sH31N304Zn: C, 67.40, H, 4.98, N, 6.74; found: C, 67.36,
H, 5.09,N, 6.93. FT-IR (cm™): 3026 (m), 1741 (m), 1631 (w), 1593 (s), 1502 (w), 1442
(W), 1429 (m), 1340 (m), 1300 (m), 1203 (m), 1068 (w), 1016 (m), 950 (s), 842 (s), 800
(m), 677 (m).

2.5 Synthesis of {[Cd2(1,2-chdc)(1,2-Hchdc)(H20)(tpeb)2]-(NO3)(H20)}, (CP4)

Yellow rod-shaped of CP4 were obtained in a similar manner to that used for the
isolation of CP2, using Cd(NO3)2-4H>0 (6.2 mg, 0.02 mmol), 1,2-chdc (3.4 mg, 0.02
mmol), tpeb (7.7 mg, 0.02 mmol) as starting materials in H2O/DMF without HNO;
solution (72% based on Cd). Anal. calcd. (%) for C70Hs7N7013Cd2: C, 58.37, H, 4.66,
N, 6.81; found: C, 58.51, H, 4.59, N, 6.49. FT-IR (cm™): 3300 (b), 3030 (m), 1739 (m),
1635 (w), 1606 (s), 1575 (s), 1502 (m), 1413 (m), 1300 (m), 1226 (m), 1068 (w), 1012
(m), 968 (s), 846 (s), 802 (s), 763 (m), 711 (m), 678 (s).

2.6 Synthesis of [Cd(1,3-chdc)(tpeb)]. (CP5)

Yellow flake of CP5 were obtained in a similar manner to that used for the isolation
of CP3, using Cd(NO3)>-4H>0 (24.7 mg, 0.08 mmol), 1,3-chdc (13.8 mg, 0.08 mmol),
tpeb (15.5 mg, 0.04 mmol) as starting materials in H>O (5 mL) and DMF (3.5 mL) with
0.2 mL HNO;3 solution (88% based on tpeb). Anal. calcd. (%) for C3sH31N304Cd: C,
62.68,H,4.62, N, 6.26; found: C, 62.25, H, 4.79, N, 6.39. FT-IR (cm™): 3036 (m), 1732
(m), 1633 (w), 1593 (s), 1500 (m), 1402 (s), 1224 (m), 1066 (m), 1014 (s), 966 (s), 842
(s), 798 (s), 742 (m), 677 (s).

2.7 Synthesis of [Cd(1,4-chdc)(tpeb)]. (CP6)
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Yellow flake of CP6 were obtained in a similar manner to that used for the isolation
of CP2, using Cd(NO3)2-4H>0 (6.2 mg, 0.02 mmol), 1,4-chdc (3.4 mg, 0.02 mmol),
tpeb (3.9 mg, 0.01 mmol) as starting materials in H>O (1.2 mL) and DMA (0.3 mL)
with 0.1 mL HNO3 solution (82% based on tpeb). Anal. caled. (%) for C35H31N304Cd:
C, 62.68, H, 4.62, N, 6.26; found: C, 62.36, H, 4.39, N, 6.53. FT-IR (cm™): 3028 (m),
1741 (m), 1618 (m), 1608 (s), 1570 (s), 1502 (m), 1446 (m), 1402 (s), 1342 (m), 1303
(m), 1205 (m), 1068 (w), 1016 (m), 952 (m), 842 (s), 798 (m), 677 (s).

2.8 Synthesis of CP2a-CP6a

Irradiation of single crystals of CP2-CP6 (100 mg) by using a high power LED lamp
source (Beijing Perfectlight: PLSLED 100C) of 365 nm wavelength with 50 W power
at 298 K for 6 h, 28 h, 10 h, 20 h and 24 h afforded its photoproduct CP2a-CP6a.

2.9 Photocurrent response measurements

Photocurrent response measurements were performed on a CHI 660E
electrochemical analyzer (Chenhua, Shanghai) with a conventional three electrode
arrangement consisting of glassy carbon electrode as working electrode, platinum as
the counter electrode, and Ag/AgCl as the reference electrode. The aqueous solution of
0.1 mol L! Na,SO4 was used as the electrolyte. For the preparation of the working
electrode, 2.5 mg of the crystalline powder and 2.5 mg carbon black was dispersed in
485 pL of isopropanol solvent followed by adding 15 pL. of Nafion (5 wt%). After
sonication for 1 h to form a homogeneous ink, a 20 uL drop was cast on a freshly
polished GCE (Effective area 0.196 cm?) and dried under ambient conditions. High
power LED lamp source of 475 nm wavelength with an output power of 90 W was used
for the electrochemical test, which was fixed 10 cm from the electrode. The electrode
excitation time was 0-500 s with 20 s interval, and the test voltage was 0.5 V.

3. X-ray data collection and structure determination

Single crystals of CP1-CP6 suitable for X-ray diffraction were obtained directly from
the above preparations. Single crystals coated with Paratone oil on a Cryoloop pin were
mounted on a Bruker Smart CCD diffractometer with a graphite monochromated Mo
Ka radiation (A = 0.71073 A) (CP2, CP6) and a graphite monochromated Ga Ko
radiation (A = 1.34138 A) (CP1, CP3, CP4, CP5) at 120 K (CP2), 273 K (CP3), 137
K (CP1, CP4, CP5) and 296 K (CP6). Bruker SAINT was employed for the refinement
of cell parameters and the reduction of collected data and absorption corrections (multi-
scan) were applied. The crystal structures of all compounds were solved by Direct
methods and refined by full-matrix least-squares techniques using the SHELXL-2018
program.5? The non-hydrogen atoms were refined with anisotropic displacement
parameters. The H atoms bonded to C and N atoms were positioned with idealized
geometry and refined with fixed isotropic displacement parameters. There are highly
disordered water molecules in CP5 and it is not possible to identify the position of their
hydrogen atoms based on the residual peaks on the Fourier diagram. We removed the
diffraction electron data for these highly disordered water molecules using the
SQUEEZE command of the PLATON package®® and used the resulting data for further
refinement to produce the final cif file. A summary of the pertinent crystallographic
data for these compounds is provided in Table S1. The X-ray crystallographic
coordinates for structures reported in this study have been deposited at the Cambridge
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Crystallographic Data Centre (CCDC), under deposition numbers 2251590 (CP1),
2251591 (CP2), 2251592 (CP3), 2251593 (CP4), 2251594 (CPS5) and 2251595 (CP6),
respectively. These data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif.

Table S1 Summary of crystal data and structure refinement parameters for CP1, CP2,
CP3, CP4, CP5 and CP6.

Compounds CP1 CP2 CP3
Empirical formula C35H33N305Zn C3sH33N30sZn C3sH31N304Zn
Formula weight 641.01 641.01 623.00
Temperature (K) 137.0 120(2) 273(2)
Crystal system Orthorhombic Monoclinic Monoclinic
Space group Pbcm (57) P2/n (14) C2/c (15)
a (R) 12.4054(11) 7.9429(3) 30.222(7)
b(A) 10.6944(10) 27.8055(9) 13.045(2)
c(A) 24.935(2) 12.8882(5) 15.589(3)
£() 90 96.7670(10) 91.586(12)
Volume (A?%) 3308.1(5) 2826.61(18) 6144(2)

Z 4 4 8

4 (mm™) 0.907 0.920 0.955

peate (g om™) 1.287 1.506 1.347
F(000) 1336 1336 2592
Reflections collected 41500 44579 141630
Independent reflections 3295 6486 7047

Rint 0.0613 0.0650 0.0616

R? 0.1398 0.0569 0.0533
wR,P 0.2727 0.1650 0.1748
GOF*¢ 1.124 1.049 1.061
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to be continued for Table S1

Compounds CP4 CP5 CPé6
Empirical formula C70He7N7013Cd2 C3sH3N304Cd - C3sH3iN304Cd
Formula weight 1439.10 671.03 670.03
Temperature (K) 137 136(2) 296.15
Crystal system Orthorhombic Monoclinic Monoclinic
Space group Pbca (61) C2/c (15) C2/c (15)
a(A) 14.6634(13) 29.288(4) 29.558(6)
b (A) 24.805(2) 13.0795(16) 13.226(3)
c(A) 34.107(3) 16.931(2) 16.250(4)
B(©) 90 94.192(5) 93.107(7)
Volume (A%) 12405.6(18) 6468.5(14) 6343(2)
zZ 8 8 8

u (mm™1) 4.063 3.829 0.730
Peale (g cm ™) 1.541 1.378 1.403
F(000) 5888 2744 2736
Reflections collected 184940 73708 68662
Independent reflections 14183 7395 7298

Rint 0.0624 0.0677 0.0721
Ri? 0.0402 0.0884 0.0806
wR2P 0.0997 0.2681 0.2568
GOF® 1.084 1.068 1.027

Ry = X||Fo|-|Fe|[/Z|Fo|. PwR2 = {EW(Fo2-FY/Ew(Fo?)*} 2. “GOF = {Zw((Fo>-FP*)?)/(n-

)2, where n = number of reflections and p = total numbers of parameters refined.
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Fig. S1 'H NMR data of tpeb ligand (400 MHz, CDCls).

Fig. S2 View of the coordination environment of the Znl in CP1 with a labelling
scheme. Hydrogen atoms were omitted for clarity.
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Fig. S3 (A) View of the coordination environment of the Znl in CP2 with a labelling
scheme. (B) A section of the 1D helix chain extending along the b axis of CP2. (C)
Two adjacent 1D chains in the structure of CP2. Hydrogen atoms were omitted for
clarity.
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Fig. S4 View of the coordination environment of the Znl in CP3 (A) with a labelling
scheme, same as Cdl in CP6 (B). Hydrogen atoms were omitted for clarity.
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Fig. S5 View of the asymmetric unit of CP4 with a labelling scheme (A) and the
different coordination environments of Cd1l (B) and Cd2 (C) in CP4. Hydrogen atoms
were omitted for clarity.
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Fig. S6 (A) View of the coordination environment of the Cdl in CP5. (B) A 2D layer
composed of 1,3-chdc linkers and Cd*" in CP5. (C) The 3D pillar-layer framework of
CP5. Hydrogen atoms were omitted for clarity.
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Fig. S7 The PXRD patterns of CP1-CP6.
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Fig. S8 The TGA curves of CP1-CP6 in a N, atmosphere from room temperature to
800 °C.
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Fig. S9 View of the alignment of the tpeb ligands in CP1-CP6.

Table S2 The distances of C=C bonds in CP1-CP6.

C=C @ ) ®
CP1 4.898 A/4.898 A ] ]
(parallel)
3.927 A/4.207 A 3.927 A/4.207 A
CP2 . . -
(crisscross) (crisscross)
3.662 A/3.788 A 3.662 A/3.788 A 3.850 A/4.543 A
CP3 . . .
(crisscross) (crisscross) (crisscross)
CP4 3.683 A/3.820 A 3.811 A/3.821 A 3.852 A/4.017 A
(parallel) (parallel) (parallel)
CP5 3.670 A/3.684 A 3.670 A/3.684 A 4.012 A/4.070 A
(parallel) (parallel) (crisscross)
CP6 3.623 A/3.638 A 3.623 A/3.638 A 3.954 A/4.501 A
(parallel) (parallel) (crisscross)
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Fig. S10 The 'H NMR spectra of CP1 after UV light (A = 365 nm) irradiation at 298 K
(B) and 263 K (C) for 24 h (400 MHz, DMSO-djs) and the alignment of tpeb ligands in
CP1 (A).
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Fig. S11 The 'H NMR spectra of CP2 after UV light (A = 365 nm) irradiation at 298 K
(B) and 263 K (C) for different time (400 MHz, DMSO-ds) and the alignment of tpeb
ligands before and after the photocycloaddition reaction (A). Plots of conversion of tpeb
in CP2 versus irradiation time based on '"H NMR result (D) and corresponding fitting
of kinetic rate at 298 K (E) and 263 K (F) of CP2.
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Fig. S12 The 'H NMR spectra of CP3 after UV light (A = 365 nm) irradiation at 298 K
(B) and 263 K (C) for different time (400 MHz, DMSO-ds) and the alignment of tpeb
ligands before and after the photocycloaddition reaction (A). Plots of conversion of tpeb
in CP3 versus irradiation time based on '"H NMR result (D) and corresponding fitting

of kinetic rate at 298 K (E) and 263 K (F) of CP3.
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Fig. S13 The 'H NMR spectra of CP4 after UV light (A = 365 nm) irradiation at 298 K
(B) and 263 K (C) for different time (400 MHz, DMSO-ds) and the alignment of tpeb
ligands before and after the photocycloaddition reaction (A). Plots of conversion of tpeb

in CP4 versus irradiation time based on '"H NMR result (D) and corresponding fitting
of kinetic rate at 298 K (E) and 263 K (F) of CP4.
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Fig. S14 The 'H NMR spectra of CP5 after UV light (A = 365 nm) irradiation at 298 K
(B) and 263 K (C) for different time (400 MHz, DMSO-ds) and the alignment of tpeb
ligands before and after the photocycloaddition reaction (A). Plots of conversion of tpeb
in CP5 versus irradiation time based on '"H NMR result (D) and corresponding fitting
of kinetic rate at 298 K (E) and 263 K (F) of CP5.
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Fig. S15 The 'H NMR spectra of CP6 after UV light (A = 365 nm) irradiation at 298 K
(B) and 263 K (C) for different time (400 MHz, DMSO-ds) and the alignment of tpeb
ligands before and after the photocycloaddition reaction (A). Plots of conversion of tpeb
in CP6 versus irradiation time based on '"H NMR result (D) and corresponding fitting
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Fig. S16 The PXRD patterns of CP1-CP6 after UV irradiation for different time at 298
K.
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Fig. S17 Infrared spectra of CP1-CP6 before and after the photoreaction at 298 K.

Fig. S18 The structure of Congo Red (CR).
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Fig. S19 UV-vis spectra of the adsorption of CP1-CP6 (A) and CP2a-CP6a (B) to CR
in aqueous solution.

Table S3 Adsorption capacity of CP1-CP6 on CR in aqueous solution.
CP1 CP2 CP3 CP4 CP5 CP6

CR (mg-gh) 748.48 591.20 778.31 688.14 711.88 789.83

Table S4 Adsorption capacity of CP2a-CPé6a on CR in aqueous solution.

CP2a CP3a CP4a CP5a CP6a
CR (mg-gh) 540.9 792.37 725.77 757.30 793.90
A —— CP6+CR after photocurrent test B —— CP6a+CR afler photocurrent test
——CP6 after photocurrent test —— CP6a after photocurrent test
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Fig. S20 The PXRD patterns of CP6 and CP6+CR, CP6a and CP6a+CR before and
after photocurrent test.
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Fig. S21 Photocurrent responses of CR, CP6a and CP6a+CR coated on glassy carbon
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Fig. S22 Photocurrent responses of CR, CP5 and CP5+CR coated on glassy carbon
electrodes.
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