Supporting Information

Poly(3,4-ethylenedioxythiophene) Encapsulating Hydrated Vanadium Oxide Nanobelts Boosts their Conductivity and Zinc-ion Storage Properties

Jingjing Sun¹, Mengyu Rong¹, Zhanming Gao², Ziyi Feng¹, Yanyan Liu¹, Tao Hu^{1,*}, Changgong Meng^{1,3}, Yifu Zhang^{1,*}

¹School of Chemistry, Dalian University of Technology, Dalian, 116024, China ²State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China ³College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China

*Corresponding authors.

Tao Hu: inorchem@dlut.edu.cn; Yifu Zhang: yfzhang@dlut.edu.cn

Materials

Ammonium metavanadate (NH₄VO₃, 99%) and glacial acetic acid (HOAc, 99.5%) were purchased from the Siopharm Chemical Reagent Co., Ltd. 3,4-ethylenedioxythiophene (EDOT) monomer was purchased from the Tianjin Damao Chemical Reagent Factory. All materials were used as received without any further treatment.

Fig. S1. Morphology of VOH: a SEM image; b TEM image; c HRTEM image and corresponding lattice

distance.

Fig. S2. a XPS survey spectra and b high-resolution O 2p XPS spectra of VOH and VOH@PEDOT.

Fig. S3. Cycling performance of Zn//VOH@PEDOT cell at 0.1 A g⁻¹

Fig. S4. GITT curves and the diffusion coefficients of the Zn//VOH cell at charge/discharge states.

Fig. S5. a SEM image of VOH@PEDOT after long cycles. b-f Elemental mapping images of

VOH@PEDOT.

Fig. S6. XPS survey spectra of VOH@PEDOT at different states.

Fig. S7. Structural side and top views of VOH (a and c) and VOH@PEDOT (b and d).

Fig. S8

Fig. S8. DOS of O 2p and C 2p orbitals for VOH@PEDOT.

Table S1

Table S1. Detailed information on the peak position and intensity of high-resolution V 2p spectra of

Material	Information	V ⁵⁺ (2p _{1/2})	V ⁴⁺ (2p _{1/2})	V ³⁺ (2p _{1/2})	V ⁵⁺ (2p _{3/2})	V ⁴⁺ (2p _{3/2})	V ³⁺ (2p _{3/2})
	Position (eV)	525.2	524.5	523.8	517.8	517.4	516.1
VOH	Area	5856.55	1213.77	7110.5	11538.3	11867.4	9881.2
	Proportion (%)	12	2.6	15	24.3	25	21
VOH@PEDOT	Position (eV)	525.2	524.5	523.8	517.8	517.3	516.1
(pristine)	Area	8740	5374.2	17751	23416.8	29538.6	19693.4
	Proportion (%)	8.4	5	1.7	22.4	28.3	18.8
VOH@PEDOT	Position (eV)	525.2	524.5	523.8	517.8	516.9	516.1
(discharged)	Area	474.3	932.6	3700	2038.4	1349.2	1555
	Proportion (%)	4.7	9.3	37	20.3	13.4	15.5
VOH@PEDOT	Position (eV)	525.2	524.5	523.8	517.8	517.3	516.3
(charged)	Area	5018.2	827	6908.3	11468.5	13837.4	2440
	Proportion (%)	12	2	17	28	34.2	6

VOH and VOH@PEDOT in various states.

Table S2

Table S2. Comparison of the electrochemical performance of other aqueous zinc-ion batteries with

Cathode materials	Specific capacity	Cycling	Energy density	Power density	Ref.
VO ₂ (B) nanofibers	$357 \text{ mAh } \text{g}^{-1} \text{ at } 0.1 \text{ A } \text{g}^{-1}$	$\sim 100\%$ after 50 cycles at 0.1 A g ⁻¹	297 Wh kg ⁻¹	180 W kg ⁻¹	1
VO ₂ /rGO composite	276 mAh g^{-1} at 0.1 A g^{-1}	99% after 1000 cycles at 4 A g^{-1}	65 Wh kg ⁻¹	$\begin{array}{c} 7800 \ \mathrm{W} \\ \mathrm{kg}^{-1} \end{array}$	2
H ₂ V ₃ O ₈ nanowire/Graphene	394 mAh g^{-1} at 0.1 A g^{-1}	-	89 Wh kg ⁻¹	2215 W kg ⁻¹	3
$V_{10}O_{24}$ ·12H ₂ O	$\begin{array}{c} 164.5 \text{ mAh } \text{g}^{-1} \text{ at } 0.2 \text{ A} \\ \text{g}^{-1} \text{ after } 2 \text{ cycles} \end{array}$	81.6% after 1000 cycles at 5 A g^{-1}	163.4 Wh kg ⁻¹	217.9 W kg ⁻¹	4
V ₂ O ₅ ·nH ₂ O/graphene	$381 \text{ mAh } \text{g}^{-1} \text{ at } 0.3 \text{ A } \text{g}^{-1}$	71% after 900 cycles at 6 A g^{-1}	90 Wh kg ⁻¹	$\begin{array}{c c} 6400 \text{ W} \\ kg^{-1} \end{array}$	5
CaVOH/rGO	$\begin{array}{c} 409 \text{ mAh } g^{-1} \text{ at } 0.05 \text{ A} \\ g^{-1} \end{array}$	90% over 2000 cycles at 4 A g^{-1}	381 Wh kg ⁻¹	$48 \mathrm{~W~kg^{-1}}$	6
PANI-V₂O₅∙ <i>n</i> H₂O	363 and 143 mAh g^{-1} at 0.1 and 4 A g^{-1}	$\begin{array}{c} 196 \text{ mAh } \text{g}^{-1} \text{ left} \\ \text{over 100 cycles at} \\ 5 \text{ A } \text{g}^{-1} \end{array}$	275 Wh kg ⁻¹	78 W kg ⁻¹	7
PANI-V ₂ O ₅ · <i>n</i> H ₂ O	350 mAh g ⁻¹ at 0.1 A g ⁻¹	-	-	-	8
PANI-V ₂ O ₅ · <i>n</i> H ₂ O	$380 \text{ mAh g}^{-1} \text{ at } 0.1 \text{ A g}^{-1}$	$\begin{array}{c} 259 \text{ mAh } \text{g}^{-1} \text{ left} \\ \text{over 800 cycles at} \\ 1 \text{ A } \text{g}^{-1} \end{array}$	216 Wh kg ⁻¹	$\begin{array}{c} 252 \text{ W} \\ \text{kg}^{-1} \end{array}$	9
PANI/V ₂ O ₅	353.6 mAh g^{-1} at 0.1A g^{-1}	$\begin{array}{c} 280 \text{ mAh } \text{g}^{-1} \text{ left} \\ \text{over 100 cycles at} \\ 0.2 \text{ A } \text{g}^{-1} \end{array}$	$\begin{array}{c} 258 \text{ Wh} \\ \text{kg}^{-1} \end{array}$	$\begin{array}{c} 2784 \text{ W} \\ \text{kg}^{-1} \end{array}$	10
PANI-V ₂ O ₅	$360 \text{ mAh g}^{-1} \text{ at } 0.5 \text{ A g}^{-1}$	$\begin{array}{c} 208 \text{ mAh } \text{g}^{-1} \text{ left} \\ \text{over 2000 cycles} \\ \text{at 5 A } \text{g}^{-1} \end{array}$	187 Wh kg ⁻¹	$7200 \mathrm{~W} \\ \mathrm{~kg^{-1}}$	11
Rose-like PANI-		87.5% left over			
intercalated V ₂ O ₅	420 mAh g^{-1} at 0.5 A g^{-1}	$\begin{array}{c} 600 \text{ cycles at 5 A} \\ g^{-1} \end{array}$	-	-	
PANI-intercalated V ₂ O ₅	490 mAh g^{-1} at 0.1 A g^{-1}	201 mAh g ⁻¹ left over 1000 cycles at 2 C	430 Wh kg ⁻¹	-	11
V ₂ O ₅ /PEDOT	380, 274 and 102 mAh g^{-1} at 0.3, 5 and 20 A g^{-1}	93% capacity left over 200 cycles at 5 A g ⁻¹	-	-	12
PANI-VOH@PANI			576.8	84.1 W	13
			Wh kg ⁻¹	kg ⁻¹	1.5
PEDOT intercalated VOH	370.5 and 175 mAh g^{-1} at 0.5 and 50 A g^{-1}	$310.1 \text{ mAh } \text{g}^{-1}$ left over 1000 cycles at 5 A g ⁻¹	-	-	14
PEDOT intercalated Vö- V ₂ O ₅	449 mAh g^{-1} at 0.2 A g^{-1}	94.3% capacity left over 6000	302 Wh kg ⁻¹	60 W kg ⁻¹	15

similar cathode materials with the Zn//VOH@PEDOT cell

		cycles at 10 A g^{-1}			
PEDOT intercalated V ₂ O ₅	388, 367 and 351 mAh g^{-1} at 5, 8 and 10 A g^{-1}	$269 \text{ mAh } \text{g}^{-1} \text{ left}$ over 4500 cycles at 10 A g ⁻¹	247.57 Wh kg ⁻¹	590.8 W kg ⁻¹	16
PEDOT-NH ₄ V ₃ O ₈	356.8 and 163.6 mAh g^{-1} at 0.05 and 10 A g^{-1}	94.1% capacity left over 5000 cycles at 10 A g ⁻¹	353.1 Wh kg ⁻¹	$50 \mathrm{~W~kg^{-1}}$	17
V ₂ O ₅ @PEDOT on carbon cloth	360 and 232 mAh $\rm g^{-1}$ at 0.1 and 20 A $\rm g^{-1}$	97% capacity left over 600 cycles at 1 A g ⁻¹ 89% capacity left over 1000 cycles at 5 A g ⁻¹	243.3 Wh kg ⁻¹	90 W kg ⁻¹	18
VOH@PEDOT	432 mAh g^{-1} at 0.1 A g^{-1}	$323 \text{ mAh } \text{g}^{-1} \text{ left}$ over 100 cycles at $0.1 \text{ A } \text{g}^{-1}$	255 Wh kg ⁻¹	245 W kg ⁻¹	This work

Table S3

Table S3. Detailed information on the peak position and intensity of high-resolution C 1s spectra of

State	Information	C-0	C-S	C=C	C-C
	Position (eV)	288.24	286.06	284.77	284.1
Pristine	Area	1191.3	4467.5	4488.2	1465.3
	Proportion (%)	10.3	38.6	38.75	12.4
Discharged	Position (eV)	288.24	286.4	284.77	284.1
	Area	4045.2	13339.8	12251	6760.2
	Proportion (%)	11.1	36.7	33.7	17.2
Charged	Position (eV)	288.24	286.06	284.77	284.1
	Area	1403.2	13046.4	11765.8	913.6
	Proportion (%)	5.2	49.1	44.1	3.4

VOH@PEDOT in various states.

References

 J. Ding, Z. Du, L. Gu, B. Li, L. Wang, S. Wang, Y. Gong and S. Yang, Ultrafast Zn²⁺ Intercalation and Deintercalation in Vanadium Dioxide, *Adv. Mater.*, 2018, **30**, 1800762.

2. X. Dai, F. Wan, L. Zhang, H. Cao and Z. Niu, Freestanding graphene/VO₂ composite films for highly stable aqueous Zn-ion batteries with superior rate performance, *Energy Storage Mater.*, 2019, **17**, 143-150.

3. Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang, P. M. Voyles, G. Chen, Y. Wei and X. Wang, H₂V₃O₈ Nanowire/Graphene Electrodes for Aqueous Rechargeable Zinc Ion Batteries with High Rate Capability and Large Capacity, *Adv. Energy Mater.*, 2018, **8**, 1800144.

T. Wei, Q. Li, G. Yang and C. Wang, High-rate and durable aqueous zinc ion battery using dendritic V₁₀O₂₄·12H₂O cathode material with large interlamellar spacing, *Electrochim. Acta*, 2018, **287**, 60-67.

M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K. T. Mueller,
 L. Mai, J. Liu and J. Yang, Water-Lubricated Intercalation in V₂O₅·nH₂O for High-Capacity and High-Rate
 Aqueous Rechargeable Zinc Batteries, *Adv. Mater.*, 2018, **30**, 1703725.

6. T. Hu, Z. Feng, Y. Zhang, Y. Liu, J. Sun, J. Zheng, H. Jiang, P. Wang, X. Dong and C. Meng, "Double Guarantee Mechanism" of Ca²⁺-intercalation and rGO-integration Ensures Hydrated Vanadium Oxide with a High Performance for Aqueous Zinc-ion Batteries, *Inorg. Chem. Front.*, 2021, **8**, 79-89.

7. Y. Zhang, L. Xu, H. Jiang, Y. Liu and C. Meng, Polyaniline-expanded the interlayer spacing of hydrated vanadium pentoxide by the interface-intercalation for aqueous rechargeable Zn-ion batteries, *J. Colloid Interface Sci.*, 2021, **603**, 641-650.

8. R. Li, F. Xing, T. Li, H. Zhang, J. Yan, Q. Zheng and X. Li, Intercalated polyaniline in V_2O_5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery, *Energy Storage Mater.*, 2021, **38**, 590-598.

9. M. Wang, J. Zhang, L. Zhang, J. Li, W. Wang, Z. Yang, L. Zhang, Y. Wang, J. Chen, Y. Huang, D. Mitlin and X. Li, Graphene-like Vanadium Oxygen Hydrate (VOH) Nanosheets Intercalated and Exfoliated by Polyaniline (PANI) for Aqueous Zinc-Ion Batteries (ZIBs), *ACS Appl. Mater. Interfaces*, 2020, **12**, 31564-31574.

10. Y. Liu, Z. Pan, D. Tian, T. Hu, H. Jiang, J. Yang, J. Sun, J. Zheng, C. Meng and Y. Zhang, Employing "one for two" strategy to design polyaniline-intercalated hydrated vanadium oxide with expanded interlayer spacing for high-performance aqueous zinc-ion batteries, *Chem. Eng. J.*, 2020, **399**, 125842.

11. S. Chen, K. Li, K. S. Hui and J. Zhang, Regulation of Lamellar Structure of Vanadium Oxide via

Polyaniline Intercalation for High-Performance Aqueous Zinc-Ion Battery, *Adv. Funct. Mater.*, 2020, **30**, 2003890.

12. F. S. Volkov, E. G. Tolstopjatova, S. N. Eliseeva, M. A. Kamenskii, A. I. Vypritskaia, A. I. Volkov and V. V. Kondratiev, Vanadium(V) oxide coated by poly(3,4-ethylenedioxythiophene) as cathode for aqueous zinc-ion batteries with improved electrochemical performance, *Mater. Lett.*, 2022, **308**, 131210.

13. J. Sun, Y. Zhao, Y. Liu, H. Jiang, C. Huang, M. Cui, T. Hu, C. Meng and Y. Zhang, "Three-in-One" Strategy that Ensures $V_2O_5 \cdot nH_2O$ with Superior Zn^{2+} Storage by Simultaneous Protonated Polyaniline Intercalation and Encapsulation, *Small Struct.*, 2022, **3**, 2100212.

S. Li, X. Wei, C. Wu, B. Zhang, S. Wu and Z. Lin, Constructing Three-Dimensional Structured V₂O₅/Conductive Polymer Composite with Fast Ion/Electron Transfer Kinetics for Aqueous Zinc-Ion Battery, *ACS Appl. Energ. Mater.*, 2021, 4, 4208-4216.

15. Y. Du, X. Wang and J. Sun, Tunable oxygen vacancy concentration in vanadium oxide as massproduced cathode for aqueous zinc-ion batteries, *Nano Res.*, 2021, **14**, 754-761.

16. Z. Yao, Q. Wu, K. Chen, J. Liu and C. Li, Shallow-layer pillaring of a conductive polymer in monolithic grains to drive superior zinc storage via a cascading effect, *Energ. Environ. Sci.*, 2020, **13**, 3149-3163.

 D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu, Y. Zhang, F. Dong, Y. Wang and Y. Xia, Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery, *Chem*, 2020, 6, 968-984.

 D. Xu, H. Wang, F. Li, Z. Guan, R. Wang, B. He, Y. Gong and X. Hu, Conformal Conducting Polymer Shells on V₂O₅ Nanosheet Arrays as a High-Rate and Stable Zinc-Ion Battery Cathode, *Adv. Mater. Interfaces*, 2019, 6, 1801506.