Supporting Information

Enhancing the Nitrogen Reduction Activity of Iron with Inactive Group-IVA Elements by Optimized Stoichiometry

Hanqing Yin^{1,2}, Stuart Bell^{2,3}, Dmitri Golberg^{1,2}, Aijun Du^{1,2*}

¹School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001, Australia

²QUT Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001, Australia

³School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001, Australia

*Corresponding author: aijun.du@qut.edu.au

Figure S1: Free energy file of N_2 adsorption and the first hydrogenation step on Fe(111) and Fe(211). Both have a largely positive free energy change of the first hydrogenation step, making them inefficient for e-N2RR. The horizontal adsorption mode is not available due to the large distance between surface iron atoms. Color map: bronze—Fe; red—N; black—H.

Figure S2: a): Structure of Fe₄Si conventional cell and the specific surface termination we used in our calculation. The motivation for picking this layer is a previous work reporting subsurface Si-doping on iron. b): Free energy diagram of Fe₄Si(100) with the largest free energy change as 0.518 eV. Color map: bronze—Fe; blue—Si.

Figure S3: Proton adsorption free energy on $Fe_3Si(100)$ deviates a lot from the optimal value, indicating a bad HER performance.

Figure S4: a)&c): Structures of $Fe_{11}Si_5$ and Fe_2Si conventional cell. The specific lattice parameters can be found in manuscript. b)&d): Free energy diagrams of $Fe_{11}Si_5(100)$ and $Fe_2Si(001)$. Color map: bronze—Fe; blue—Si.

Fe ₄ Si	(100)	(010)		
Endon	$\mathbf{E}_{ad} > 0$	$\mathbf{E}_{ad} > 0$		
Horizontal	To Endon	To Endon		
Sideon	No adsorption	No adsorption		

Table S1: N_2 adsorption on different surfaces of {100} family of Fe₄Si, where only (001) surface enables stable adsorption for dinitrogen molecule.

	*NN	*NNH	*NHNH	*NHNH ₂	*NH ₂ NH ₂	*NH ₂	*NH₃
400 eV	-1017.734495	-1020.744881	-1024.260399	-1027.952395	-1031.019724	-1036.547584	-1020.599193
500 eV	-1017.731394	-1020.741959	-1024.256706	-1027.940628	-1031.000059	-1036.527445	-1020.583509

Table S2: Comparison of total free energies of all e-N2RR intermediates on Fe₃Si with energy cutoff as 400 eV and 500 eV, separately. The Fe₃Si(100) slab model has 96 Fe atoms and 32 Si atoms.

FeSi	ΔG of 1 st hydrogenation step on (100)
Endon	0.868 eV
Horizontal	N/A
Sideon	0.974 eV

Table S3: Activity of e-N2RR on FeSi(100) surface. The free energies of 1st hydrogenation step for all adsorption modes are even worse than pristine iron.