Supporting Information

Preparation of Inorganic-Framework Molecular Imprinted TiO₂/SiO₂

Nanofibers by One-Step Electrospinning and its Highly Selective

Photodegradation

Jingyao Li,^a Yanhua Song,^a Fangke Wang,^a Xiaozhen Zhang,^a Haiyuan Zhu,^a and

Haifeng Zou*a

^a College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.

Corresponding Author:

*E-mail: haifengzou0431@sohu.com

Figure S1. SEM images of (a)-(e) STN-STM0.1 and (f)-(j) TN-TM0.1 products

Figure S2. XRD patterns of samples TN-TM0.1 and corresponding standard data of anatase (PDF#21-1272) and rutile (PDF#21-1276)

Figure S3. UV-vis diffuse reflectance spectra and corresponding band-gap energy spectra (inset) of STN (a), STM0.01 (b), STM0.02 (c), STM0.05 (d), STM0.1 (e) products

Figure S4. (a) UV-vis spectra and (b-f) $(F(R)*h\nu)^{1/2}$ -h ν curves of TN, TM0.01, TM0.02, TM0.05 and TM0.1

Figure S5. The standard curves of RhB (a), MO (b), MB (c)

Figure S6. (a) Photodegradation efficiency curves of RhB by TN, TM0.01, TM0.02, TM0.05 and TM0.1 (b) Corresponding kinetic linear simulation curves of RhB photodegradation

Figure S7. (a) Mott-Schottky curves of as-prepared photocatalysts and (b) VB

Figure S8. Digital images of solutions of (a) RhB and (b) RhB and MO mixture before and after photodegradation

Figure S9. TOC removal efficiency of RhB by STM0.05 at different time.

Figure S10. (a) Photodegradation curves of RhB by STM0.05 at different solution pH and (b) corresponding pseudo-first-order kinetics fitting curves.

Figure S11. Mass spectra of degradation products of RhB by STM0.05.

Figure S12. EPR spectra of STM0.05 in RhB degradation of (a) DMPO- $\cdot O_2^-$ and (b) DMPO- \cdot OH.

Samples	Crain Siza (nm)	Phase Composition (%)			
	Grain Size (iiii)	Anatase	Rutile		
STN	15.06	71.41	28.59		
STM0.01	12.43	89.13	10.87		
STM0.02	12.25	90.12	9.88		
STM0.05	11.19	100	0		
STM0.1	10.20	100	0		
TN	26.52	9.53	90.47		
TM0.01	24.17	17.26	82.74		
TM0.02	24.02	18.81	81.19		
TM0.05	23.58	42.24	57.76		
TM0.1	19.54	74.92	25.08		

Table S1. The calculated crystal sizes and phase compositions of the prepared samples

Table S2. Kinetic Parameters Calculated from the Pseudo-First-Order Kinetics and

Pseudo-Second-Order Kinetics

Kinetics Model	Parameters	STN	STM0.01	STM0.02	STM0.05	STM0.1
Pseudo-first-order kinetics Pseudo-second-order kinetics	R ²	0.90745	0.91906	0.08825	0.80074	0.03032
	K_1	0.00873	0.00941	0.00284	0.02206	0.00467
	Q _{e,cal}	1.54467	4.357332	1.670812	5.141783	5.652681
	\mathbb{R}^2	0.99964	0.99696	0.99836	0.99936	0.99482
	K_2	0.107	0.0289	0.082	0.056	0.073
	Q _{e,cal}	4.57	8.352	9.022	9.918	9.281
	h	3.106	3.14	8.538	6.589	13.446

Table S3. Zeta	potential	values	of as-p	orepared	samp	oles
----------------	-----------	--------	---------	----------	------	------

Samples	Zeta potential (mV)			
STN	-17.92			
STM0.01	-27.97			
STM0.02	-35.00			
STM0.05	-39.70			
STM0.1	-37.52			

Photocatalysts	Dosage (g/L)	RhB concentration (mg/L)	Degradation efficiency (%)	Reaction time (min)	Reference
STM0.05	0.33	15	100	15	This work
MIL-88A(Fe)-GO- H ₂ O ₂	0.4	10	100	80	[1]
g-C ₃ N ₄ /WO ₃ /NCDs	0.4	10	80	60	[2]
V_2O_5/g - C_3N_4	0.5	10	95.5	60	[3]
g-C ₃ N ₄ /CdO	1.5	10	96	120	[4]
Bi_2O_3/g - C_3N_4	0.25	10	83	180	[5]

Table S4. Comparison of RhB degradation by various photocatalysts

References

[1] N. Liu, W. Huang, X. Zhang, L. Tang, L. Wang, Y. Wang, M. Wu, Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible lightdriven photodegradation of RhB, Applied Catalysis B: Environmental 221 (2018) 119-128. https://doi.org/10.1016/j.apcatb.2017.09.020.

[2] J. Jia, C. Jiang, X. Zhang, P. Li, J. Xiong, Z. Zhang, T. Wu, Y. Wang, Urea-modified carbon quantum dots as electron mediator decorated g-C3N4/WO3 with enhanced visible-light photocatalytic activity and mechanism insight, Applied Surface Science 495 (2019) 143524-143534. https://doi.org/10.1016/j.apsusc.2019.07.266.

[3] Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan, W. Shi, In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants, Applied Catalysis B: Environmental 180 (2016) 663-673. https://doi.org/10.1016/j.apcatb.2015.06.057.

[4] T.D. Munusamy, C.S. Yee, M.M.R. Khan, Construction of hybrid g-C3N4/CdO nanocomposite with improved photodegradation activity of RhB dye under visible light irradiation, Advanced Powder Technology 31(7) (2020) 2921-2931.

https://doi.org/10.1016/j.apt.2020.05.017.

[5] M. Ben Abdelaziz, B. Chouchene, L. Balan, T. Gries, G. Medjahdi, H. Ezzaouia, R. Schneider, One pot synthesis of bismuth oxide/graphitic carbon nitride composites with high photocatalytic activity, Molecular Catalysis 463 (2019) 110-118. https://doi.org/10.1016/j.mcat.2018.12.004.