"FeV-cofactor"-inspired bionic Fe-doped BiVO₄ photocatalyst decorated with few layer 2D black phosphorus for efficient nitrogen reduction

Hongda Li,^{a,c} Shuai Jian,^a Boran Tao,^{a,c} Guoxiao Xu,^a Baosheng Liu,^a Shaonan Gu,^{b,*} Guofu Wang,^{a,*} Haixin Chang ^{c,*}

^a Liuzhou key laboratory for new energy vehicle power lithium battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China

^b Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi–Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

^c Quantum–Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding authors: hxchang@hust.edu.cn (Haixin Chang); sngu@qlu.edu.cn (Shaonan Gu); gfwang@guet.edu.cn (Guofu Wang)

Figure S1. SEM images of (a) $BiVO_4$, (b) $FeBiVO_4$, (c) $FeBiVO_4$ -0.05BP and (d) $BiVO_4$ -0.05BP.

Figure S2. High-resolution XPS of Bi 4*f* for BiVO₄ and FeBiVO₄-0.05BP.

Figure S3. The NH_4^+ amount detected by cation exchange chromatography: (a) photocatalytic N_2 reduction of BiVO₄ and FeBiVO₄–0.05BP under visible light irradiation; (b) the standard curve.

Figure S4. XRD patterns of fresh and recycled FeBiVO₄-0.05BP.

Figure S5. Changes of XPS before and after photocatalytic nitrogen reduction reaction: (a) V 2p and (b) Fe 2p; (c) summary of changes in XPS peak areas. There are almost no changes in the valence states of V element, while the number of Fe²⁺ becomes more after photocatalytic nitrogen reduction reaction. This may be due to the presence of electron transfer between redox couples (V⁵⁺/V⁴⁺ and Fe³⁺/Fe²⁺) during photocatalytic nitrogen reduction, and the need to reduce part of Fe³⁺ needs to be reduced to Fe²⁺, thus achieving the redox regulation equilibrium of V⁵⁺/V⁴⁺ and Fe³⁺/Fe²⁺ and the valence equilibrium between Fe and V ions.

Figure S6. Time-resolved fluorescence decay spectra of BiVO₄ and FeBiVO₄-0.05BP.

Figure S7. UV–vis diffuse reflectance spectra of BiVO₄, FeBiVO₄, BiVO₄-0.05BP, FeBiVO₄-0.05BP, FeBiVO₄-0.02BP and FeBiVO₄-0.10BP.

Text S1

The corresponding equations (Eq. (3-10)) for the change in Gibbs free energy are as following:

$$\Delta G_{1} = G(*NN) - G(*) - G(N_{2}) \#(S1) \Delta G_{2} = G(*NNH) - G(*NN) - G(H) \#(S2) \Delta G_{3} = G(*NNH_{2}) - G(*NNH) - G(H) \#(S3) \Delta G_{4} = G(*NNH_{3}) - G(*NNH_{2}) - G(H) \#(S4) \Delta G_{5} = G(*NH) + G(NH_{3}) - G(*NNH_{3}) - G(H) \#(S5) \Delta G_{6} = G(*NH_{2}) - G(*NH) - G(H) \#(S6) \Delta G_{7} = G(*NH_{3}) - G(*NH_{2}) - G(H) \#(S7) \Delta G_{8} = G(*) + G(NH_{3}) - G(*NH_{3}) \#(S7)$$

Samplas		Lattice Parameters		
Samples	Crystal vol (A ²)	a (Å)	b (Å)	c (Å)
BiVO ₄	310.27	5.197	11.700	5.103
FeBiVO ₄	308.98	5.182	11.690	5.101

Table S1. Unit cell parameters of $BiVO_4$ and $FeBiVO_4$.

Samples	BiVO ₄	FeBiVO ₄	FeBiVO ₄ -0.05BP	BiVO ₄ -0.05BP
Surface areas (m ² g ⁻¹)	35.23	34.19	51.84	49.98
Bi (ppm)	284.6	296.9	274.3	286.7
Fe (ppm)	/	1.554	1.442	/
V (ppm)	68.81	74.63	66.79	69.41
P (ppm)	/	/	15.37	16.51
Theoretical Fe/Bi (mol%)	/	2.00	2.00	/
Real Fe/Bi (mol%)	/	1.95	1.96	/
Theoretical P (wt.%)	/	/	5.00	5.00
Real P (wt.%)	/	/	4.29	4.43

Table S2. Element concentrations (ICP-OES) and BET specific surface areas of BiVO₄, FeBiVO₄,

FeBiVO₄-0.05BP and BiVO₄-0.05BP.

Catalvata	Scavenger	Light Source	NH ₃ generation rate	Defenence
Catalysis		Light Source	μmol g ⁻¹ h ⁻¹	Keierence
BiVO ₄	None	300 W Xe lamp, λ>400 nm	103.4	S1
Porous C-TiO ₂	None	300 W Xe lamp, λ>395 nm	109.3	S2
Fe-W ₁₈ O ₄₉ -BP	None	500 W Xe lamp	187.6	S3
Ni ₂ P-BP	Methanol	300 W Xe lamp	6.14	S4
Defect-rich	Nono	200 W. Valomn	50.4	S5
Bi ₃ O ₄ Br	INOILE	500 w Xe lamp		
F capped TiO ₂	None	300 W Xe lamp	206	S6
Bi ₂ WO ₆ -BP	None	300 W Xe lamp	73.6	S7
Gd-Bi ₂ MoO ₆	None	300 W Xe lamp, λ>420 nm	300.15	S8
CdS/WO ₃	None	300 W Xe lamp	35.8	S9
FeBiVO ₄ -0.05BP	None	300 W Xe lamp, λ>420 nm	337.9	This work

Table S3. Photocatalytic nitrogen fixation performance of different catalysts under various reaction conditions.

References

[S1] G. Zhang, Y. Meng, B. Xie, Z. Ni, H. Lu, S. Xia, Precise location and regulation of active sites for highly efficient photocatalytic synthesis of ammonia by facet-dependent BiVO₄ single crystals, *Appl. Catal. B: Environ.* 2021, 296, 120379.

[S2] Q. Han, C. Wu, H. Jiao, R. Xu, Y. Wang, J. Xie, Q. Guo, J. Tang, Rational Design of High-Concentration Ti³⁺ in Porous Carbon-Doped TiO₂ Nanosheets for Efficient Photocatalytic Ammonia Synthesis, *Adv. Mater.* 2021, 33, 2008180.

[S3] G. Dong, X. Huang, Y. Bi, Anchoring Black Phosphorus Quantum Dots on Fe-Doped W₁₈O₄₉ Nanowires for Efficient Photocatalytic Nitrogen Fixation, *Angew. Chem. Int. Edit.* 2022, 61, e202204271.

[S4] Z.-K. Shen, M. Cheng, Y.-J. Yuan, L. Pei, J. Zhong, J. Guan, X. Li, Z.-J. Li, L. Bao, X. Zhang, Z.-T. Yu, Z. Zou, Identifying the role of interface chemical bonds in activating charge transfer for enhanced photocatalytic nitrogen fixation of Ni₂P-black phosphorus photocatalysts, *Appl. Catal. B: Environ.* 2021, 295, 120274.

[S5] J. Di, J.X. Xia, M. F. Chisholm, J. Zhong, C. Chen, X. Z. Cao, F. Dong, Z. Chi, H.L. Chen, Y. X. Weng, J. Xiong, S. Z. Yang, H. M. Li, Z. Liu, S. Dai, Defect-tailoring mediated electron-hole separation in single unit cell Bi₃O₄Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation, *Adv. Mater.* 2019, 31, 1807576.

[S6] R. Guan, D. Wang, Y. Zhang, C. Liu, W. Xu, J. Wang, Z. Zhao, M. Feng, Q. Shang, Z. Sun, Enhanced photocatalytic N₂ fixation via defective and fluoride modified TiO₂ surface. *Appl. Catal. B: Environ.* 2021, 282, 119580.

[S7] L. Liu, J. Liu, K. Sun, J. Wan, F. Fu, J. Fan, Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance, *Chem. Eng. J.* 2021, 411, 128629.

[S8] H. Li, H. Zhao, C. Li, B. Li, B. Tao, S. Gu, G. Wang, H. Chang, Redox regulation of photocatalytic nitrogen reduction reaction by gadolinium doping in two-dimensional bismuth molybdate nanosheets, *Appl. Surf. Sci.* 2022, 600, 154105.

[S9] P. Xia, X. Pan, S. Jiang, J. Yu, B. He, P. M. Ismail, W. Bai, J. Yang, L. Yang, H. Zhang, M. Cheng, H. Li, Q. Zhang, C. Xiao, Y. Xie, Designing a Redox Heterojunction for Photocatalytic

"Overall Nitrogen Fixation" under Mild Conditions, Adv. Mater. 2022, 34, 2200563.