Supporting Information

Photoreforming of polyester plastics into added-value chemicals

coupling with H_2 evolution over a $Ni_2P/ZnIn_2S_4$ catalyst

Chu-Xuan Liu,^{ab} Rui Shi,^a Wangjing Ma,^a Fulai Liu^{*a} and Yong Chen ^{*ab}

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, CAS, Beijing 100190, P.R. China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, P.R. China

*E-mail: chenyong@mail.ipc.ac.cn; liufulai@mail.ipc.ac.cn

Fig. S1 a-b) TEM and c) high-resolution TEM images of pristine $ZnIn_2S_4$ nanosheets; d) SAED pattern of pristine $ZnIn_2S_4$ nanosheets.

Fig. S2 a-b) TEM and c) high-resolution TEM images of pure Ni_2P nanoparticles; d) SAED pattern of pure Ni_2P nanoparticles.

Fig. S3 a) high-resolution TEM image of $Ni_2P/ZnIn_2S_4$; b-c) intensity profile of $ZnIn_2S_4$ and Ni_2P crystal face.

Fig. S4 EDX spectrum of the $Ni_2P/ZnIn_2S_4$ composites.

Fig. S5 The XRD patterns of a) Ni₂P; b) Cu₃P; c) Fe₂P; d) CoP samples.

Fig. S6 UV-vis DRS spectrum of Ni₂P nanoparticles.

Fig. S7 Curve of $(h\nu)^2$ versus the energy of the exciting light $(h\nu)$ of $ZnIn_2S_4$.

Fig. S8 Mott-Schottky plots of ZnIn₂S₄.

Fig. S9 The valence band spectrum of $ZnIn_2S_4$.

Fig. S10 PL spectrum of Ni₂P nanoparticles.

Fig. S11 The photocurrent response of Ni_2P nanoparticles.

Fig. S12 Time-dependent H₂ evolution plots of Ni₂P/ZnIn₂S₄, CoP/ZnIn₂S₄, Fe₂P/ZnIn₂S₄, Cu₃P/ZnIn₂S₄ under visible light irradiation ($\lambda > 420$ nm) in 0.1 M PLA hydrolysate.

Fig. S13 Time-dependent H₂ evolution plots of Ni₂P/ZnIn₂S₄ with different mass ratio under visible light irradiation ($\lambda > 420$ nm) in 0.1 M PLA hydrolysate.

Fig. S14 ¹³C NMR of pretreated PLA after photoreforming for 24h.

Fig. S15 GC spectrum of the generated gas after photoreforming.

Fig. S16 ¹H NMR measurements of PLA oxidation.

Fig. S17 Time-dependent H₂ evolution plots of 7.5-Ni₂P/ZnIn₂S₄ under visible light irradiation ($\lambda > 420$ nm) in 0.1 M different plastic hydrolysates.

Fig. S18 ¹H NMR spectra of products before and after photoreforming of PET.

Fig. S19 ¹H NMR spectra of products before and after photoreforming of PTT.

Fig. S20 ¹H NMR spectra of products before and after photoreforming of PBT.

Fig. S21 The morphology of the samples after a long-term photoreforming.

Fig. S22 XRD of $Ni_2P/ZnIn_2S_4$ before and after photocatalytic reaction.

Fig. S23 XPS of $Ni_2P/ZnIn_2S_4$ before and after photocatalytic reaction.

Element	Weight%	Atomic%
РК	1.13	2.27
S K	21.18	41.05
Ni K	7.87	8.33
Zn K	25.80	24.53
In L	44.02	23.82
Totals	100.00	

Table S1. EDX results of elements in the 7.5-Ni₂P/ZnIn₂S₄ composites.

Table S2. ICP results of elements in the $Ni_2P/ZnIn_2S_4$ composites.

	1-Ni ₂ P/ZnIn ₂ S ₄	3-Ni ₂ P/ZnIn ₂ S ₄	5-Ni ₂ P/ZnIn ₂ S ₄
Zn (wt%)	13.471	13.818	13.985
In (wt%)	55.743	53.405	51.850
Ni (wt%)	0.800	1.803	3.591