Electronic Supplementary Information

Sustainable ammonia synthesis from the air by the integration of plasma and electrocatalysis techniques

Jun Ding,^{‡ab} Wenyi Li,^{‡*ab} Qingqing Chen,^c Jiafang Liu,^{ab} Shu Tang,^{ab} Zhiwei Wang,^d

Longwei Chen,*d and Haimin Zhang*ab

^a Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials,

Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics,

HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

^b University of Science and Technology of China, Hefei 230026, China.

^c Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu, 241002, China.

^d Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China.

* Corresponding Authors.

‡ The authors contributed equally to this work.

E-mail: park0301@mail.ustc.edu.cn, chenlw@ie.ah.cn, zhanghm@issp.ac.cn.

Experimental Section

Reagents and materials: Copper acetylacetonate $[Cu(acac)_2, 98\%]$, Platinum (II) acetylacetonate $[Pt(acac)_2, 98\%]$, L-Glutamic acid (95.0%), analytical grade ethanol and isopropanol were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Oleylamine (approximate C18-content 80-90%) and Dimethyldi-n-octadecylammonium chloride (DODAC, 96.0%) were acquired from Aladdin Industrial Corp. Nafion (5%) was purchased from Sigma Aldrich. Vulcan XC-72R was purchased from Cabot Corporation. Commercial carbon cloth was purchased from Shanghai Hesen Electric Co. Ltd. All available chemicals were used without further purification. All solutions were prepared using deionized water (Millipore Corp, 18.2 M Ω cm).

Characterization: TEM images were obtained using JEMARM 200F operating at an accelerating voltage of 200 kV. The crystalline phase of collected samples were characterized through XRD technique on a Philips X'Pert Pro X-ray diffractometer with Cu K α radiation (K α = 0.15418 nm). X-ray photoelectron spectroscopy (XPS) spectra were carried out on ESCALab MKII with Al K α radiation. The binding energies were calibrated by C 1s peak at 284.8 eV as a reference. Fourier transform infrared (FT-IR) spectra of samples were recorded on Thermo Nicolet NEXUS FT-IR spectrophotometer at room temperature. The content of each element in the catalysts was determined by the inductively coupled plasma mass spectrometry (ICP-MS, 710-ES, Varian). The UV-Vis absorption spectra were carried out on UV-Vis spectrophotometer (SHIMADZU UV-2700). Electron Spin Resonance (ESR)

measurement was conducted by Bruker EMX plus 10/12 (equipped with Oxford ESR910 Liquid Helium cryostat). The H₂ content was determined by online gas chromatography (GC-9790Plus, FULI INSTRUMENTS) thermal conductivity detector (TCD).

Calculation of energy requirement (ER):

The energy requirement (ER) was calculated as follows:

$$ER_{totle} = ER_{plasma} + ER_{electro}$$
(S1)

 $ER_{plasma} = (P_G + P_M \times R_d) \times t_{plasma} / \{(c_{NO2}) \times V_{ab}\}$ (S2)

$$ER_{electro} = P_{electro} \times (n_{NH3} / R_{NH3})$$
(S3)

Where ER_{totle} is the total energy requirement (kWh mol_{NH3}⁻¹), ER_{plasma} is the energy requiremen (kWh mol⁻¹) which convert air into NO_x⁻ by plasma, $ER_{electro}$ is the energy requiremen (kWh mol⁻¹) which convert NO₂⁻ into NH₃ by electrocatalysis. P_G is the gliding arc power (400 W), P_M is the microwave power (960 W), R_d is the duty cycle of pulse modulation (1/2), t_{plasma} is the plasma treatment time (h). c_{NO2} is the concentration of NO₂⁻ (mol mL⁻¹) and V_{ab} is the volume of absorption liquid (200 mL). P_{electro} is the actual electrocatalysis power (0.004 W), n_{NH3} is the molar mass (mol) of NH₃, R_{NH3} is the ammonia production rate of the electrocatalytic reaction (mol h⁻¹).

Determination of NO₂^{-:} 20 g of p-aminobenzenesulfonamide was added to a mixed solution of 250 mL of water and 50 mL of phosphoric acid, and then 1 g of N-(1- naphthyl)ethylenediamine dihydrochloride was dissolved in the above solution. Finally, the above solution was transferred to a 500 mL volumetric flask and diluted to the mark. 0.5 mL electrolyte was taken out from the electrolytic cell and diluted to 10 mL with H₂O. Next, 0.2 mL color reagent was added into the above mentioned 10 mL solution. After shaking and standing for 30 minutes, the absorbance measurements were performed at wavelength of 540 nm. The concentration-absorbance curves were calibrated using standard KNO₂ solutions with a series of concentrations in 1.0 M KOH solution and the obtained calibration curve $(y=3.183x+0.003, R^2=0.999)$ shown in Fig. S3 was used to calculate the produced NO₂⁻-N concentration.

Determination of NO₃⁻: The possible produced NO₃⁻ was detected by ion-chromatography (Wayeal, IC6000) measurement. In detail, 1.0 mL electrolyte was injected into the chamber for separation. The concentration-peak area curves were calibrated using standard KNO₃ solutions with a series of concentrations in 1.0 M KOH solution, in which the peak appeared at a retention time of 13.12 min. The obtained calibration curve (y=28.343x+0.342, R²=0.998) shown in Fig. S4 was used to calculate the NO₃⁻ concentration.

In addition to this method, the possible produced NO₃⁻ was detected by ultraviolet spectroscopy. For testing, 10 mL of electrolyte was transferred to colorimetric tube with, 200 μ L of 1.0 M HCl and 200 μ L of 0.8 wt % sulfamic acid solution. The UV-Vis absorption spectrum was detected at a wavelength of 220 nm and 275 nm after maintaining at room temperature for 20 min. The final absorbance is calculated using the following formula: A=A220_{nm}-2A275_{nm}. The obtained calibration curve was used to calculate the nitrate concentration. The concentration-absorbance curves were calibrated using standard KNO₃

solutions with a series of concentrations in 1.0 M KOH solution and the obtained calibration curve (y=0.060x+0.014, R²=0.997) shown in Fig. S5 was used to calculate the produced NO₃⁻ concentration.

Determination of ammonia: Concentration of the produced ammonia was spectrophotometrically detected by the indophenol blue method. Briefly, 5.0 g sodium potassium tartrate and 5.0 g sodium salicylate were dissolved in 100.0 mL of 1.0 M sodium hydroxide to prepare the chromogenic reagent (reagent A). 5 mL sodium hypochlorite ($10\% \sim 15\%$ effective chlorine) was added to deionized water to dilute to 50 mL to prepare the oxidizing reagent (reagent B) The catalytic reagent (reagent C) was prepared by sodium 0.5 g nitroferricyanide dissolved in 50 mL deionized water.

To quantitatively determine the amount of ammonia, 0.5 mL of diluted sample solution was added to a test tube and volume it to 10 mL with deionized water, then 0.5 mL reagent A, 0.2 mL reagent B and 0.20 mL reagent C were successively added, respectively. Following mixing and left-standing for 1 h the UV-Vis absorption spectrum was detected at a wavelength of 697.5 nm at room temperature. The concentration-dependent absorption spectra were calibrated using standard ammonia chloride solutions with varying concentration. The obtained calibration curve (y=1.033x+0.015, R²=0.999) shown in Fig. S12 was used to calculate the produced ammonia concentration.

Determination of hydrazine: The possible produced hydrazine was detected through the Watt and Chrisp method. Briefly, 30 mL of HCl, 5.99 g of para-(dimethylamino)

benzaldehyde and 300 mL of ethanol were mixed and used as a sensitive chromogenic reagent. Then, 0.1 mL of solution product was mixed with 5 mL of the chromogenic reagent and 10 mL HCl (1.0 M) at room temperature. After standing for 20 min, the UV-Vis absorption spectrum was measured at a wavelength of 455 nm. The obtained calibration curve (y=0.019x+0.014, R²=0.999) shown in Fig. S13 was used to calculate the N₂H₄·H₂O concentration.

Fig. S1 Photograph of the self-assembly non-thermal plasma (NTP) system.

Fig. S2 Schematic illustration of the tandem plasma reactor.

Fig. S3 (a-c) UV-Vis absorption spectra of various NO_2^--N concentrations for three repeated experiments. (d) Calibration curve used for estimation of NO_2^--N concentration.

Fig. S4 (a-c) Ion chromatogram spectra of the standard solutions with different concentrations of NO_3^- for three replicated tests. (d) The calibration curve used for calculation of NO_3^- concentration.

Fig. S5 (a-c) UV-Vis absorption spectra of the standard solutions with different concentrations of NO_3^- for three replicated tests. (d) The calibration curve used for calculation of NO_3^- concentration.

Fig. S6 (a) UV-Vis absorption spectra and (b) ion chromatogram spectra of collected samples obtained at different plasma-activation modes for NO_3^- detection. (c) The comparison table of NO_3^- concentration of the two detection methods under different plasma discharge modes.

Fig. S7 Comparison of NO₂⁻ and NO₃⁻ concentration under different plasma discharge modes.

Fig. S8 The particle size distributions of PtCu HPs.

Fig. S9 (a) Low-magnification TEM image, (b) high-resolution TEM image of PtCu NPs, (c-e) HAADF-STEM image and corresponding element mappings of PtCu NPs.

Fig. S10 (a) Low-magnification TEM image, (b) high-resolution TEM image of Cu NPs, (c-d) HAADF-STEM image and corresponding element mappings of Cu NPs.

Fig. S11 The surface survey XPS spectra of (a) PtCu HPs, (b) PtCu NPs and (c) Cu NPs.

Fig. S12 (a-c) UV-Vis absorption spectra of various NH_4^+ -N concentrations for three repeated experiments. (d) Calibration curve used for estimation of NH_4^+ -N concentration.

Fig. S13 (a-c) UV-Vis absorption spectra of the various concentrations of N_2H_4 · H_2O for three replicated tests. (d) The calibration curve used for calculation of N_2H_4 · H_2O concentration.

Fig. S14 UV-Vis absorption spectra of NH_4^+ -N concentration at different applied potentials.

Fig. S15 UV-Vis absorption spectra of collected samples obtained at different applied potentials for N_2H_4 · H_2O detection.

Fig. S16 Chronoamperometry curves in plasma treated 1.0 M KOH for 2 h of eNO₂-RR at different applied potentials.

Fig. S17 (a) Volume of H_2 detected by gas chromatography method at different applied potentials. (b) FEs of different products at different applied potentials.

Fig. S18 (a) Gas chromatography spectra of the various volume of H_2 . (b) The calibration curve used for calculation of H_2 volume. (c) Gas chromatography spectra of H_2 volume at different applied potentials.

Fig. S19 TEM image of the PtCu HPs catalyst after long-time stability test.

Fig. S20 (a) XRD pattern of PtCu HPs after long-time stability test. (b) Surface survey XPS spectrum of PtCu HPs. High-resolution (c) Pt 4f and (d) Cu 2p spectra of PtCu HPs after long-time stability test.

Fig. S21 UV-Vis absorption spectra of collected samples under different control conditions for NH₃ detection.

Fig. S22 Cyclic voltammetry curves of (a) PtCu HPs, (b) PtCu NPs and (c) Cu NPs with various scan rates (25, 50, 75, 100, 125, 150 mV s⁻¹) in the region of 0 V to -0.30 V (vs. Hg/HgO).

Tab. S1 Comparison results of our work with recently reported works for plasma generated NO_x^{-} .

Plasma	Feeding gas	Gas flowing rate	Absorption liquid	NO _x ⁻ yield rate	Ref.
Gliding arc and microwave tandem plasma	Air	45 L min ⁻¹	1.0 M KOH (200 mL)	98.16 mmol h ⁻¹	This work
Nanosecond pulsed spark plasma	N ₂ +O ₂	40 mL min ⁻¹	0.1 M KOH (100 mL)	1.35 mmol h ⁻¹	1
Pulsed high voltage discharge plasma	N ₂ +O ₂	30 mL min ⁻¹	0.1 M KOH (30 mL)	0.468mmol h ⁻¹	2
Spark discharge plasma	Air	50 mL min ⁻¹	0.1 M KOH (30 mL)	0.045 mmol h ⁻¹ (NO ₂ ⁻)	3
Double reactor glow and spark discharge plasma	Air	2 L min ⁻¹	10 mM H ₂ SO ₄ (100 mL)	2.97 mmol h ⁻¹	4
Rotating gliding arc plasma jet	Air	7 L min ⁻¹	0.1 M KOH (100 mL)	9.06 mmol h ⁻¹	5
Jet-type plasma with Ti bubbler	Air	25 L min ⁻¹	1.0 M NaOH (500 mL)	55.29 mmol h ⁻¹	6
Gliding arc plasma	Air	9 L min ⁻¹	0.1 M KOH (100 mL)	28 mmol h ⁻¹ (NO ₂ -)	7

Catalysts	Conditions	NH ₃ Yield Rate	FE (%)	Ref.
PtCu HPs	Plasma treated 1.0 M	166.02 μg h ⁻¹ mg ⁻¹	04.27	This
	КОН	(0 V vs. RHE)	84.37	work
Ni ₃ B@NiB _{2.74}	0.10 M KOH + 100	198.3 mmol h ⁻¹ cm ⁻²	100	1
	mM NO ₂ -	(-0.3V vs. RHE)	~100	
	Plasma treated 10 mM	45 nmol s ⁻¹ cm ⁻²	100	4
Cu NWs	H_2SO_4	(-0.5V vs. RHE)	~100	
	Plasma treated 0.1 M	$\sim 3.0 \text{ mg h}^{-1} \text{ cm}^{-2}$	(2	
Co SAS/N-C	КОН	(-0.63V vs. RHE)	~62	5
D C NUVCE	0.1 M PBS + 500 ppm	211.73 mg h ⁻¹ cm ⁻²		0
Ru-Cu NW/CF	NO ₂ -	(-0.6 V vs. RHE)	94.1	8
D1/C ONO	0.1 M K ₂ SO ₄ + 0.01 M	906.4 µg h ⁻¹ mg ⁻¹	01.9	9
Pd/CuO NOs	KNO ₂	(-1.5 V vs. SCE)	91.8	
M.O. NA/TM	0.1 M NaOH + 0.1 M	6300 μg h ⁻¹ mg ⁻¹	(5.4	10
$MinO_2$ NA/ I M	NaNO ₂	(-0.8 V vs. RHE)	63.4	
Ni ₂ P nanosheet	0.1 M PBS+200 ppm	$2692.2 \pm 92.1 \ \mu g \ h^{-1} \ cm^{-2}$	00.2 + 2.0	11
array	NO ₂ -	(-0.3 V vs. RHE)	90.2 ± 3.0	
	0.1 M Na ₂ SO ₄ +200	233.1 μmol h ⁻¹ cm ⁻²	05.2	10
C0B@1102/1P	ppm NaNO ₂ -N	(-0.7 V vs. RHE)	95.2	12
NiFe	0.5 M Na ₂ SO ₄ + 50 mM	351 μg h ⁻¹ mg ⁻¹	85	13
LDH/Vulcan	NaNO ₂	(-1.0 V vs. RHE)	85	
D4C/C O	0.5 M Na ₂ SO ₄ +100	0.19 mmol h ⁻¹ cm ⁻²	04.22	14
PaCu/Cu ₂ O	ppm NO ₃ ⁻ -N	(-0.4 V vs. RHE)	94.32	14
	0.05 M K ₂ SO ₄ +50	1.15 μg h ⁻¹ mg ⁻¹	10.5	15
Cu-N-C (SAC)	ppm NO ₃ -	(-0.95 V vs. RHE)	19.5	
Fe-N-C (SAC)	$0.1 \text{ M K}_2 \text{SO}_4 + 0.5 \text{ M}$	5245 μg h ⁻¹ mg ⁻¹	75	16
	NO ₃ -	(-0.66 V vs. RHE)	/3	
PTCDA/O-Cu	0.1 M PBS +500 ppm	33.54 μg h ⁻¹ mg ⁻¹	77	17
	NO ₃ -	(-0.40 V vs. RHE)		
Cu (111)	0.1 M KOH + 10 mM	390.1 µg h ⁻¹ mg ⁻¹	00.7	18
nanosheets	KNO3	(-0.15 V vs. RHE)	<u>99</u> ./	
Strained Ru	1 M KOH + 1.0 M	5.56 mol g ⁻¹ h ⁻¹	~100%	19

Tab. S2 The comparable results of our work and other recently reported eNO_3 -RR, eNO_2 -RR and eNRR electrocatalysts.

nanoclusters	KNO3	(-0.2 V vs. RHE)			
Cu@C	$1 \text{ M KOH} + 1 \times 10^{-3} \text{ M}$	469.5 μg h ⁻¹ cm ⁻²	70	20	
	NO ₃ -	(-0.9 V vs. RHE)	12		
RuNi-MOF	0.5 M Na ₂ SO ₄ +50 ppm	274 mg h ⁻¹ mg ⁻¹	73	21	
	NO3 ⁻ -N	(-1.6 V vs. Ag/AgCl)			
NiCo ₂ O ₄ /CC	0.1 M NaOH + 0.1 M	973.2 μmol h ⁻¹ cm ⁻²	99	22	
	NaNO ₃	(-0.6 V vs. RHE)	(-0.3 V vs RHE)	22	
BiFeO3	0.1 M KOH + 0.1 M	90.45 mg h ⁻¹ mg ⁻¹	06.95	23	
	KNO3	(-0.6 V vs. RHE)	90.85		
Cu/Cu ₂ O NWAs	0.5 M Na ₂ SO ₄ +200	0.245 mmol h ⁻¹ cm ⁻²	95.8	24	
	ppm NO₃⁻-N	(-0.85 V vs. RHE)	(-0.2 V vs RHE)		
Pd ₃ Cu ₁	1.0 M KOH + N ₂	39.9 µg h ⁻¹ mg ⁻¹	1.56	25	
		(-0.25 V vs. RHE)	(-0.05 V vs RHE)	23	
DiNi Allow	0.1 M Na ₂ SO ₄ + N ₂	17.5 μg h ⁻¹ mg ⁻¹	13.8	26	
BINI Alloy		(-0.3 V vs. RHE)			
Fe _{SA} -NO-C-900	0.1 M HCl + N ₂	31.9 µg h ⁻¹ mg ⁻¹	11.8	27	
		(-0.4 V vs. RHE)			
NiFe-MOF	0.1 M NaHCO ₃ + N ₂	9.3 μg h ⁻¹ mg ⁻¹	11.5	28	
		(-0.345 V vs. RHE)			
Mo ₂ C/C	$0.5 \text{ M } \text{Li}_2\text{SO}_4 + \text{N}_2$	11.3 μ g h ⁻¹ mg ⁻¹ _{Mo2C}	7.9	29	
	(pH =2)	(-0.3 V vs. RHE)	7.0		
MoS ₂ QDs	0.5 M LiClO ₄ + N ₂	39.6 µg h ⁻¹ mg ⁻¹	12.9	30	
		(-0.3 V vs. RHE)			
CoS2@NC	0.1 M HCl + N ₂	17.45 μg h ⁻¹ mg ⁻¹	16	31	
		(-0.15 V vs. RHE)	4.0		
PdRu	0.1 M HCl + N ₂	$34.2 \ \mu g \ h^{-1} \ mg^{-1}$	2.4	20	
		(-0.2 V vs. RHE)		32	

Tab. S3 The comparable results of reported NH_3 production rate, energy requirements and CO_2 emissions for the proposed method with H-B technology and other competing emerging technologies.

Nitrogen fixation	NH ₃ production	Energy requirement	CO ₂ emissions	Dof
method	rate (mg/h)	(kWh/kg _{NH3})	$(t_{\rm CO2}/t_{\rm NH3})$	Kei.
plasma-electrocatalysis	0.166	551.76	~0	This
integrated strategy	0.100			work
Plasma electrolytic	0.05	560000	~0	33
Packed-bed DBD	0.0081	340	~0	34
DBD jet electrolytic	0.44	2270	~0	35
Li-intermediary NRR	0.013	1731	~0	36
Li-intermediary NRR	0.48	1380000	~0	37
eNRR	0.00135	37	~0	38
eNRR	0.0083	5.5	~0	39
eNRR	0.0063	32	~0	40
eNRR	0.00264	29.92	~0	41
Fe–cat. (KM1) ^a (Haber-Bosch process)	642.6	10~13	~1.5	42

a. Cat. = 0.2 g, H_2:N_2= 3:1, WHSV= 60 000 mL g^{-1} h^{-1}, T= 400 °C, P= 10 MPa.

References

- L. Li, C. Tang, X. Cui, Y. Zheng, X. Wang, H. Xu, S. Zhang, T. Shao, K. Davey and S. Z. Qiao, Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction, *Angew. Chem. Int. Ed. Engl.*, 2021, 60, 14131-14137.
- Y. Ren, C. Yu, L. Wang, X. Tan, Z. Wang, Q. Wei, Y. Zhang and J. Qiu, Microscopiclevel insights into the mechanism of enhanced NH₃ synthesis in plasma-enabled cascade N₂ oxidation–electroreduction system, *J. Am. Chem. Soc.*, 2022, **144**, 10193-10200.
- S.-L. Meng, C. Zhang, C. Ye, J.-H. Li, S. Zhou, L. Zhu, X.-B. Li, C.-H. Tung and L.-Z. Wu, Cobaloximes: selective nitrite reduction catalysts for tandem ammonia synthesis, *Energy Environ. Sci.*, 2023, 16, 1590-1596.
- J. Sun, D. Alam, R. Daiyan, H. Masood, T. Zhang, R. Zhou, P. J. Cullen, E. C. Lovell, A. Jalili and R. Amal, A hybrid plasma electrocatalytic process for sustainable ammonia production, *Energy Environ. Sci.*, 2021, 14, 865-872.
- A. Wu, J. Yang, B. Xu, X.-Y. Wu, Y. Wang, X. Lv, Y. Ma, A. Xu, J. Zheng, Q. Tan, Y. Peng, Z. Qi, H. Qi, J. Li, Y. Wang, J. Harding, X. Tu, A. Wang, J. Yan and X. Li, Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis, *Appl. Catal.*, *B*, 2021, 299, 120667.
- Z. Meng, J.-X. Yao, C.-N. Sun, X. Kang, R. Gao, H.-R. Li, B. Bi, Y.-F. Zhu, J.-M. Yan and Q. Jiang, Efficient ammonia production beginning from enhanced air activation, *Adv. Energy Mater.*, 2022, 12, 2202105.
- J. Zheng, H. Zhang, J. Lv, M. Zhang, J. Wan, N. Gerrits, A. Wu, B. Lan, W. Wang, S. Wang, X. Tu, A. Bogaerts and X. Li, Enhanced NH₃ synthesis from air in a plasma tandem-electrocatalysis system using plasma-engraved N-doped defective MoS₂, *JACS Au*, 2023, 3, 1328-1336.
- N. Q. Tran, L. T. Duy, D. C. Truong, B. T. Nguyen Le, B. T. Phan, Y. Cho, X. Liu and H. Lee, Efficient ammonia synthesis via electroreduction of nitrite using single-atom Ru-doped Cu nanowire arrays, *Chem. Commun.*, 2022, 58, 5257-5260.
- S. Liu, L. Cui, S. Yin, H. Ren, Z. Wang, Y. Xu, X. Li, L. Wang and H. Wang, Heterointerface-triggered electronic structure reformation: Pd/CuO nano-olives motivate nitrite electroreduction to ammonia, *Appl. Catal.*, *B*, 2022, **319**, 121876.
- X. He, X. Li, X. Fan, J. Li, D. Zhao, L. Zhang, S. Sun, Y. Luo, D. Zheng, L. Xie, A. M. Asiri, Q. Liu and X. Sun, Ambient electroreduction of nitrite to ammonia over Ni nanoparticle supported on molasses-derived carbon sheets, *ACS Appl. Nano Mater.*, 2022, 5, 14246-14250.

- G. Wen, J. Liang, L. Zhang, T. Li, Q. Liu, X. An, X. Shi, Y. Liu, S. Gao, A. M. Asiri, Y. Luo, Q. Kong and X. Sun, Ni₂P nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions, *J. Colloid Interface Sci.*, 2022, **606**, 1055-1063.
- J. Chen, X. He, J. Li, X. Li, Z. Cai, Y. Luo, D. Zheng, T. Li, Y. Wang, Q. Liu, S. Sun, A. Farouk, M. S. Hamdy, X. Sun and B. Ying, Three-dimensional porous Co foam with nanosheets subunits for high-performance electrocatalytic nitrate-to-ammonia conversion, *Inorg. Chem. Front.*, 2023, DOI: 10.1039/D3QI00718A.
- 13. W. Wang and E. C. M. Tse, Enhanced nitrite electrovalorization to ammonia by a NiFe layered double hydroxide, *Eur. J. Inorg. Chem.*, 2022, **2022**, e202200291.
- H. Yin, Z. Chen, S. Xiong, J. Chen, C. Wang, R. Wang, Y. Kuwahara, J. Luo, H. Yamashita, Y. Peng and J. Li, Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia, *Chem. Catal.*, 2021, 1, 1088-1103.
- 15. T. Zhu, Q. Chen, P. Liao, W. Duan, S. Liang, Z. Yan and C. Feng, Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production, *Small*, 2020, **16**, 2004526.
- Z.-Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.-Y. Chen, J. Y. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami and H. Wang, Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst, *Nat. Commun.*, 2021, **12**, 2870.
- G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu and H. Wang, Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst, *Nat. Energy*, 2020, 5, 605-613.
- X. Fu, X. Zhao, X. Hu, K. He, Y. Yu, T. Li, Q. Tu, X. Qian, Q. Yue, M. R. Wasielewski and Y. Kang, Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets, *Appl. Mater. Today*, 2020, **19**, 100620.
- J. Li, G. Zhan, J. Yang, F. Quan, C. Mao, Y. Liu, B. Wang, F. Lei, L. Li, A. W. M. Chan, L. Xu, Y. Shi, Y. Du, W. Hao, P. K. Wong, J. Wang, S.-X. Dou, L. Zhang and J. C. Yu, Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters, *J. Am. Chem. Soc.*, 2020, 142, 7036-7046.
- Z. Song, Y. Liu, Y. Zhong, Q. Guo, J. Zeng and Z. Geng, Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect, *Adv. Mater.*, 2022, 34, 2204306.

- J. Qin, K. Wu, L. Chen, X. Wang, Q. Zhao, B. Liu and Z. Ye, Achieving high selectivity for nitrate electrochemical reduction to ammonia over MOF-supported RuxOy clusters, *J. Mater. Chem. A*, 2022, **10**, 3963-3969.
- Q. Liu, L. Xie, J. Liang, Y. Ren, Y. Wang, L. Zhang, L. Yue, T. Li, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, I. Shakir, P. O. Agboola, Q. Kong, Q. Wang, D. Ma and X. Sun, Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo₂O₄ nanowire array, *Small*, 2022, 18, 2106961.
- 23. J. Wang, D. Wu, M. Li, X. Wei, X. Yang, M. Shao and M. Gu, Bismuth ferrite as an electrocatalyst for the electrochemical nitrate reduction, *Nano Lett.*, 2022, **22**, 5600-5606.
- Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, Unveiling the activity origin of a copperbased electrocatalyst for selective nitrate reduction to ammonia, *Angew. Chem. Int. Ed. Engl.*, 2020, **59**, 5350-5354.
- F. Pang, Z. Wang, K. Zhang, J. He, W. Zhang, C. Guo and Y. Ding, Bimodal nanoporous Pd₃Cu₁ alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction, *Nano Energy*, 2019, **58**, 834-841.
- 26. Z. Fang, P. Wu, Y. Qian and G. Yu, Gel-derived amorphous bismuth-nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation, *Angew. Chem. Int. Ed. Engl.*, 2021, **60**, 4275-4281.
- J. Yao, Y. Zhou, J.-M. Yan and Q. Jiang, Regulating Fe₂(MoO₄)₃ by Au nanoparticles for efficient N₂ Electroreduction under ambient conditions, *Adv. Energy Mater.*, 2021, 11, 2003701.
- J. Duan, Y. Sun, S. Chen, X. Chen and C. Zhao, A zero-dimensional nickel, iron-metalorganic framework (MOF) for synergistic N₂ electrofixation, *J. Mater. Chem. A*, 2020, 8, 18810-18815.
- 29. H. Cheng, L.-X. Ding, G.-F. Chen, L. Zhang, J. Xue and H. Wang, Nitrogen reduction reaction: molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions, *Adv. Mater.*, 2018, **30**, 1870350.
- 30. W. Ye, M. Arif, X. Fang, M. A. Mushtaq, X. Chen and D. Yan, Efficient photoelectrochemical route for the ambient reduction of N₂ to NH₃ based on nanojunctions assembled from MoS₂ Nanosheets and TiO₂, ACS Appl. Mater. Interfaces, 2019, **11**, 28809-28817.
- 31. P. Wei, H. Xie, X. Zhu, R. Zhao, L. Ji, X. Tong, Y. Luo, G. Cui, Z. Wang and X. Sun, CoS₂ nanoparticles-embedded N-doped carbon nanobox derived from ZIF-67 for electrocatalytic N₂-to-NH₃ fixation under ambient conditions, *ACS Sustainable Chem. Eng.*, 2020, 8, 29-33.

- 32. H. Wang, Y. Li, D. Yang, X. Qian, Z. Wang, Y. Xu, X. Li, H. Xue and L. Wang, Direct fabrication of bi-metallic PdRu nanorod assemblies for electrochemical ammonia synthesis, *Nanoscale*, 2019, **11**, 5499-5505.
- S. Kumari, S. Pishgar, M. E. Schwarting, W. F. Paxton and J. M. Spurgeon, Synergistic plasma-assisted electrochemical reduction of nitrogen to ammonia. *Chem. Commun.*, 2018, 54, 13347–13350.
- 34. Y. Wang, M. Craven, X. Yu, J. Ding, P. Bryant, J. Huang and X. Tu, Plasma-enhanced catalytic synthesis of ammonia over a Ni/Al₂O₃ catalyst at near-room temperature: Insights into the importance of the catalyst surface on the reaction mechanism. ACS Catal., 2019, 9, 10780–10793.
- 35. R. Hawtof, S. Ghosh, E. Guarr, C. Xu, R. Mohan Sankaran and J. N. Renner, Catalystfree, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system. *Sci. Adv.*, 2019, **5**, eaat5778.
- 36. S. Z. Andersen, V. Čolić, S. Yang, J. A. Schwalbe, A. C. Nielander, J. M. McEnaney, K. Enemark-rasmussen, J. G. Baker, A. R. Singh and B. A. Rohr, A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. *Nature*, 2019, **570**, 504–508.
- 37. N. Lazouski, Z. J. Schiffer, K. Williams and K. Manthiram, Understanding continuous lithium-mediated electrochemical nitrogen reduction. *Joule*, 2019, **3**, 1127–1139.
- J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. *Nat. Commun.*, 2018, 9, 1795.
- S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan and Q. Jiang, Amorphizing of Au nanoparticles by CeO_x–RGO hybrid support towards highly efficient electrocatalyst for N₂ reduction under ambient conditions. *Adv. Mater.*, 2017, 29, 1700001.
- L. Zhang, L.-X. Ding, G.-F. Chen, X. Yang, and H. Wang, Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. *Angew. Chem. Int. Ed. Engl.*, 2019, 58, 2612–2616.
- 41. B. H. R. Suryanto, D. Wang, L. M. Azofra, M. Harb, L. Cavallo, R. Jalili, D. R. G. Mitchell, M. Chatti and D. R. MacFarlane, MoS₂ polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia. *ACS Energy Lett.*, 2019, 4, 430–435.
- 42. S. Hagen, R. Barfod, R. Fehrmann, C. J. H. Jacobsen, H. T. Teunissen, and I. Chorkendorff, Ammonia synthesis with barium-promoted iron–cobalt alloys supported on carbon. *J. Catal.*, 2003, **214**, 327–335.