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1. Experimental section

1.1 Preparation of electrodes

Figure 1 shows the schematic illustration of the synthesis of the Ni(OH)2/Cu/NF 

catalyst. Specifically, a 1x1 cm2 NF was soaked in dilute hydrochloric acid solution for 

3 min and then rinsed with ultrapure water. Next, it was soaked in acetone solution for 

15 min followed by washing with ultrapure water to remove impurities from the 

surface. For the electrodeposition of Cu/NF, a Chronoamperometry method was used 

with Ag/AgCl as the reference electrode, graphite rod as the counter electrode, and NF 

as the working electrode. The NF was immersed in 50 mL of deposition solution 

containing 0.10 mol·L-1 CuSO4·5H2O and 0.40 mol·L-1 H3BO3. The deposition 

potential was -0.90 V, and the deposition time was 30 min. The Cu/NF electrode 

prepared in the last step was used as the working electrode and immersed in a 50 mL 

deposition solution containing 0.10 mol·L-1 Ni(NO3)2·6H2O for electrodeposition to 

obtain the Ni(OH)2/Cu/NF electrode. The preparation method of Ni(OH)2/NF electrode 

is similar to the above steps, except that there is no electrodeposited Cu. In addition, 

the spent Ni(OH)2/NF and Ni(OH)2/Cu/NF electrodes mentioned in the article were 

obtained by reacting at a current density of 100 mA·cm-2 for 12 hours after OER.

1.2 Characterization

The microscopic morphology, crystal structure and composition of the catalyst 

were obtained by using scanning electron microscopy (SEM, ZEISS Sigma 300), 

transmission electron microscopy (JEOL JEM 2100F), X-ray diffraction (D8 Advance), 

and in situ Raman spectroscopy (Renishaw invia).

1.3  Electrochemical Measurements

All electrochemical tests in this study were performed in a 1.0 mol·L-1 KOH 

electrolyte using a three-electrode system at an electrochemical workstation 

(CHI760E). The working, reference, and counter electrodes used were the as-prepared 

electrodes, Ag/AgCl, and carbon rods, respectively. The area of the immersed working 

electrode is 0.5 cm×1.0 cm. When calculating the current density, we considered the 

area of both sides of the electrodes, that is 1 cm2. The measured potential was converted 

to the standard reference hydrogen electrode using the formula: E(RHE) = E(Ag/AgCl) 

+ 0.197 + 0.059×pH. All potentials were ohmic-corrected. The specific setting 

parameters during electrochemical testing are described in the OER performance test 

chapter.



Figure S1 SEM images of Ni(OH)2/NF (after OER) (a, b) ; Ni(OH)2/Cu/NF (after 

OER) (c, d).



Figure S2. EDS maps of the Ni(OH)2/Cu/NF , corresponding to the distribution of Ni, 

Cu and O elements, respectively.



Figure S3. EDS maps of the Ni(OH)2/Cu/NF (after OER) , corresponding to the 

distribution of Ni, Cu and O elements, respectively.



Figure S4. Ex-situ Raman spectroscopy of the Ni(OH)2/NF , Ni(OH)2/NF (after OER), 

Ni(OH)2/Cu/NF, Ni(OH)2/Cu/NF (after OER).



Figure S5. CV plot of NF (a), Cu/NF (c), Ni(OH)2/NF (e), Ni(OH)2/Cu/NF (g) at 

different scan rate; Double-layer capacitance for different electrodes, NF (b), Cu/NF 

(d), Ni(OH)2/NF (f), Ni(OH)2/Cu/NF (h).



Figure S6. Impedance fitting circuit diagram of NF (a), Cu/NF (b), Ni(OH)2/NF (c), 

Ni(OH)2/Cu/NF (d).



Table S1 Impedance fitting results for different electrodes.

Electrode
Solution resistance

(Rs, Ω)

Charge transfer resistance

（Rct, Ω）

NF 1.55 9.41

Cu/NF 1.46 21.1

Ni(OH)2/NF 1.89 3.71

Ni(OH)2/Cu/NF 1.36 0.892



Table S2 Comparison of OER performance of the Ni(OH)2/Cu/NF with some reported 

excellent Ni-based catalysts.

Catalysts Electrolyte
Overpotential

at 100 mA cm-2 
(mV)

Tafel slope 
(mV dec-1) Ref.

FCN-BTCMOF 1 M KOH 250 29.3 [1]

FeNi-HDNAs 1 M KOH 300 91.66 [2]

NiFeB 1 M KOH 252 - [3]

LaNi5 1 M KOH 322 59 [4]

NiFe LDH-PANI 1 M KOH 270 44 [5]

FeCoNiMnRu/CNFs 1 M KOH 308 61.3 [6]

NiTe2/NF@CuFe 1 M KOH 265 33 [7]

NiCoP/CC 1 M KOH 330 64.2 [8]

Ni2S 1 M KOH 348 59 [9]

MoFe:Ni(OH)2/NiOOH 1 M KOH 280 47 [10]

S/N-CMF@FexCoyNi1-x-y-
MOF 1 M KOH About 320 53.5 [11]

a-NiCo/NC 1 M KOH About 300 49 [12]

Fe–Ni(O)OH 1 M KOH 289 48 [13]

NiFeW3-LDHs 1 M KOH 256 36.44 [14]

Ni5P4@FeP 1 M KOH 242 43.93 [15]

Ni(OH)2/Cu/NF 1 M KOH 260 41 This 
work
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