Supporting Information

Design of Anti-thermal Quenching Pr³⁺-doped Niobate Phosphor Based on Charge

Transfer and Intervalence Charge Transfer Band Excitation-driven Strategy

Chunwei Yang,^a Ning Guo,^{a,*} Song Qu,^a Qinchan Ma,^a Jianxia Liu,^a Shunyi Chen,^a and Ruizhuo Ouyang^a,

^{*a*} Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

*Corresponding author: E-mail: guoning@usst.edu.cn

Contents

Part 1. Supporting Figures	
Part 2. Supporting Tables	S11-S13

Part 1. Supporting Figures

Figure S1. The Rietveld refinement plot of the X-ray diffraction pattern of $YNbO_4:x\%Pr^{3+}$ (x = 0, 0.1, 1.5, 2.5).

Figure S2. The SEM image of YNbO₄:0.5%Pr³⁺.

Figure S3. Temperature behavior of integrated intensity of matrix emission and ${}^{3}P_{0}$ emission of YNbO₄:x%Pr³⁺ (x = 0.1, 0.5, 1.5) under excitation of 270 nm and 288 nm.

Figure S4. (a) Experimental data and fitted plots of FIR (I_{615} nm/ I_{492} nm) versus temperature in the range of 303–523 K for YNbO₄:0.1%Pr³⁺. (b) Plot of absolute sensitivity S_a and relative sensitivity S_r vs. temperature (303–523 K) for YNbO₄:0.1%Pr³⁺ under excitation at 288 nm.

Figure S5. (a) and (c) Experimental data and fitted curves of FIR (I_{615} nm/ I_{416} nm) vs. temperature for YNbO₄:x%Pr³⁺ (x = 0.5, 1.5) in the range of 303–523 K. (b)and (d) Plot of absolute sensitivity S_a and relative sensitivity S_r vs. temperature (303–523 K) for YNbO₄:x%Pr³⁺ (x = 0.5, 1.5) under excitation at 270 nm.

Figure S6. (a) and (c) Experimental data and fitted curves of FIR (I_{615} nm/ I_{492} nm) vs. temperature for YNbO₄:x%Pr³⁺ (x = 0.5, 1.5) in the range of 303–523 K. (b) and (d) Plot of absolute sensitivity S_a and relative sensitivity S_r vs. temperature (303–523 K) for YNbO₄:x%Pr³⁺(x = 0.5, 1.5) under excitation at 288 nm.

Figure S7. PL spectrum of $YNbO_4:x\%Pr^{3+}$ (x = 0, 0.1, 0.5, 1.5, 2.5) phosphors excited at 454 nm.

Figure S8. (a) Temperature-dependent PLE spectra of $YNbO_4:0.1\%Pr^{3+}$ phosphor under the monitoring of 416 nm, (b) 492 nm and (c) 615 nm. (d-f) Temperature-dependent curve of luminescence integrated intensity in the PLE spectrum of $YNbO_4:0.1\%Pr^{3+}$ phosphor.

Figure S9. (a) FIR value of $YNbO_4:0.1\%Pr^{3+}$ phosphor in temperature-cycle test under excitation of 270 nm and (b) 288 nm.

Figure S10. (a) and (b) CIE chromaticity diagram and photograph of $YNbO_4:x\%Pr^{3+}$ (x = 0.5, 1.5) at different temperatures under 270 nm and 288 nm excitation.

Part 2. Supporting Tables

Formula	Atom	X	У	Z	Occ.	Mult
YNbO ₄	Y1	0.0000	0.6219(3)	0.25000	1.0000	4
	Nb1	0.0000	0.1437(23)	0.25000	1.0000	4
	01	0.2512(25)	0.9409(8)	0.3451(29)	1.0000	8
	O2	0.3451(29)	0.2872(7)	0.2970(3)	1.0000	8
	Y1	0.00000	0.6213(4)	0.25000	0.9990	4
	Pr1	0.00000	0.6213(4)	0.25000	0.0010	4
YNbO ₄ :0.1%Pr ³⁺	Nb1	0.00000	0.1432(24)	0.25000	1.0000	4
	01	0.2661(27)	0.0372(8)	0.3555(30)	1.0000	8
	O2	0.2956(28)	0.2875(8)	0.282(4)	1.0000	8
	Y1	0.00000	0.6222(4)	0.25000	0.9950	4
	Pr1	0.00000	0.6000(5)	0.25000	0.0050	4
YNbO ₄ :0.5%Pr ³⁺	Nb1	0.00000	0.1442(20)	0.25000	0.9702	4
	01	0.2692(18)	0.0344(6)	0.3642(21)	1.017(15)	8
	O2	0.3081(17)	0.2865(6)	0.2772(28)	1.056(13)	8
	Y1	0.00000	0.6224(7)	0.25000	0.9850	4
	Pr1	0.00000	0.625(25)	0.25000	0.0150	4
YNbO ₄ :1.5%Pr ³⁺	Nb1	0.00000	0.1440(4)	0.25000	1.0000	4
	01	0.266(4)	0.0337(13)	0.3560(4)	1.0000	8
	02	0.295(4)	0.2863(12)	0.271(7)	1.0000	8
YNbO4:2.5%Pr ³⁺	Y1	0.00000	0.6210(7)	0.25000	0.9750	4
	Pr1	0.00000	0.6200(20)	0.25000	0.0250	4
	Nb1	0.00000	0.1436(18)	0.25000	1.0026	4
	O1	0.2525(23)	0.0373(7)	0.3377(26)	0.9224	8
	O2	0.2929(21)	0.2849(6)	0.2957(29)	0.9669	8

Table S1

Table S1. Refinement results of the atomic coordinates of $YNbO_4:x\%Pr^{3+}$ (x = 0, 0.1, 0.5, 1.5, 2.5)

Table 52. Remement results of the atomic coordinates of $110004.x/011$ (x = 0, 0.1, 0.5, 1.5, 2.5).							
parameter	space group	a(Å)	b(Å)	c(Å)	$\alpha = \gamma(^{\circ})$	β(°)	V(Å ³)
YNbO ₄	C12/c1(15)	7.0358	10.94628	5.2972	90	134.0726	293.1080
YNbO ₄ :0.1%Pr ³⁺	C12/c1(15)	7.0354	10.94520	5.2967	90	134.0753	293.1080
YNbO ₄ :0.5%Pr ³⁺	C12/c1(15)	7.0368	10.94805	5.2981	90	134.0765	293.2279
YNbO ₄ :1.5%Pr ³⁺	C12/c1(15)	7.038	10.95050	5.2992	90	134.0870	293.3720
YNbO ₄ :2.5%Pr ³⁺	C12/c1(15)	7.041	10.95654	5.3021	90	134.0909	293.8038

Table S2

Table S2. Refinement results of the atomic coordinates of $YNbO_4:x\%Pr^{3+}$ (x = 0, 0.1, 0.5, 1.5, 2.5).

Table S3

Phosphors	$\lambda_{ex}(nm)$	Temperature range(K)	Mode	Max. S _a (K ⁻¹)	Max. S _r (%K ⁻¹)	Ref.
Gd ₂ ZnTiO ₆ :Pr ³⁺	300	293-433	FIR	0.63	1.67	52
Ba _{0.995} TiO ₃ :Pr ³⁺	370	313-413	FIR	0.0575	2.77	53
YNbO ₄ :Pr ³⁺ ,Tb ³⁺	295	298-538	FIR	0.0125	1.01	54
CaMoO ₄ :Pr ³⁺	279	303-573	FIR	0.01684	2.216	55
$CaWO_4:Pr^{3+}$	290/450	303-573	FIR	/	1.5	56
YNbO ₄ :Pr ³⁺	270	303-523	FIR	0.0426	3.74	This work
YNbO ₄ :Pr ³⁺	288	303-523	FIR	0.0849	0.52	This work

Table S3. Temperature sensing performances of several typical temperature sensors.