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Preparation of acidified multi-walled carbon nanotubes (CNTs)

Put MWCNTs in the mixed acid of V ( H2SO4): V ( HNO3) = 3:1 and mix well, stir at 

room temperature for 30 minutes, then pour the mixed solution into a three-necked 

flask, keep the water bath at a constant temperature of 80°C, and keep 8h reflux. After 

the reaction is finished, cool to room temperature, then pour the solution into a beaker 

and dilute it with deionized water, and make it neutral, filter and wash it with 

deionized water, wash it several times until it is neutral, and place the product in an 

oven at 60°C under vacuum dry. Finally, acidified MWCNTs were obtained.
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Fig. S1 Partial XRD patterns of δ-MnO2, Co-MnO2 and Co-MnO2/CNTs.

Fig. S2 XRD patterns of δ-MnO2/CNTs.
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Fig. S3 Raman spectra of δ-MnO2/CNTs.
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Fig. S4 N2 adsorption–desorption isotherm of the δ-MnO2 material.

Fig. S5 Pore size distribution curve of the δ-MnO2 and Co-MnO2/CNTs material.
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Fig. S6 Co-MnO2/CNTs heated to 800°under air.
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Fig. S7 XPS survey spectra (c) of δ-MnO2/CNTs.

The average oxidation state AOS of Mn in the Co-MnO2/CNTs is determined by 
analyzing the Mn 3s multiplet splitting magnitude (ΔE) according to the equation as 
follows[1]: 

AOS = 8.95-1.13 ∆Es (eV)                                            (S1)

Fig. S8 O 1s spectra of δ-MnO2, Co-MnO2 and Co-MnO2/CNTs.

Fig. S9 C 1s spectra of δ-MnO2, Co-MnO2 and Co-MnO2/CNTs.



S9



S10

Fig. S10 SEM images of δ-MnO2/CNTs.
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Fig. S11 EDX of the Co-MnO2/CNTs and the corresponding elemental content (the inset).
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Fig. S12 CV curves of δ-MnO2,Co-MnO2 and δ-MnO2/CNTs at 0.1 mV s-1.

Fig. S13 CV curves of δ-MnO2, Co-MnO2 and Co-MnO2/CNTs at 0.1 mV s-1.
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Fig. S14 GCD profiles of the δ-MnO2, Co-MnO2 and δ-MnO2/CNTs electrode obtained at 0.2 A g-

1.

Fig. S15 Comparison of GCD profiles between δ-MnO2, Co-MnO2 and Co-MnO2/CNTs at 0.2 A 
g-1. 
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Fig. S16 Cycling performance at 0.2 A g-1 of the ZIBs with δ-MnO2/CNTs

Fig. S17 Long-term cycling performance at 1.0 A g-1 of the ZIBs with δ-MnO2/CNTs
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Fig. S18 a) CV curve of Co-MnO2/CNTs battery in aqueous electrolyte (2 M ZnSO4) at a scan of 
1 mV s−1. b) GCD profiles of the Co-MnO2/CNTs electrode obtained in aqueous electrolyte (2 M 
ZnSO4) at a scan of 0.2 A g-1. 

Fig. S19 Cycling performance of Co-MnO2/CNTs at 0.2 A g-1 in aqueous electrolyte (2 M ZnSO4).

It can be found in Fig. S12a that when the electrolyte is 2 M ZnSO4 solution, four 

cycles are performed at a scan rate of 0.1 mV s-1, and a very clear redox peak can be 

observed in the first cycle under the premise of an open circuit voltage of 1.63 V , but 

the reduction peak at around 1.2 V gradually disappeared as the number of cycles 

increased. Corresponding to the GCD curve in Fig. S12b at 0.2 mA g-1, the discharge 

curve platform located in the 1.2-1.3 V was also gradually disappeared. To this end, 

the battery was tested for 500 cycles at 0.2 mA g-1. It was found that the capacity of 

the Co-MnO2/CNTs sample gradually decreased from 283 mAh g-1 to 101 mAh g-1 

when without Mn2+ was added to the electrolyte, the capacity retention rate is only 

35.6%. 
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Table S1. Performance comparison of aqueous ZIBs with manganese oxide-based materials as 

cathodes.

Cathode material Electrolyte Specific capacity Capacity retention Ref.

Co-MnO2/CNTs 2 M ZnSO4+ 0.2 M MnSO4 365 mA h g−1 at

0.2 A g−1

94.6% after 1500 cycles 

at 1 A g−1

This 

work

α-MnO2 1 M ZnSO4 233 mA h g−1 at 

0.083 A g−1 

63% after 50 cycles at 

0.083 A g−1

[2]

β-MnO2 1 M ZnSO4 247 mA h g−1 at

0.066 A g−1

75% after 200 cycles at 

0.2 A g−1

[3]

δ-MnO2 1 M ZnSO4 252 mA h g−1 at 

0.083 A g−1

43% after 100 cycles at 

0.083 A g−1

[4]

Bi-α-MnO2 2 M ZnSO4+ 0.2 M MnSO4 325 mA h g−1 at

0.3 A g−1

90.9% after 2000 cycles 

at 1 A g−1

[5]

ZnMn2O4/NG 1 M ZnSO4+ 0.05 M MnSO4 232 mA h g−1 at

0.1 A g−1

97.4% after 2500 cycles 

at 1 A g−1

[6]

Mn2O3@PPy 2 M ZnSO4+ 0.1 M MnSO4 255 mA h g−1 at

0.1 A g−1

No decreasing after 

2000 cycles at 0.4 A g−1

[7]

δ-NMOH 2 M ZnSO4+ 0.2 M MnSO4 232 mA h g−1 at

2 C

Nearly 100% after 2000 

cycles at 10 C

[8]

Mn3O4  2 M ZnSO4 232 mA h g−1 at

0.2 A g−1

No decreasing after 300 

cycles at 0.5 A g−1

[9]

Zn-δ-MnO2 2 M ZnSO4+ 0.2 M MnSO4 278 mA h g−1 at

0.38 A g−1

98% after 10000 cycles 

at 7 A g−1

[10]
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Fig. S20 Compared with other ZIBs Mn-based electrodes previously reported, the specific 
capacity (stable capacity) of Co-MnO2/CNTs is higher at different current densities.
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Table S2. The Rs and Rct values of pristine Co-MnO2/CNTs, Co-MnO2 and δ-MnO2 cathodes.

Fig. S21 Relationship between Z′and ω-1/2 of the electrodes in the low frequency region.

According to the reported literatures, the ion diffusion coefficient (D) could be 
calculated via the following equations[11]:

                                          (S2)𝑍' = 𝑅𝑆 + 𝑅𝑓 + 𝑅𝑐𝑡 + 𝜎𝜔−1/2

                                                      
𝐷 =

0.5𝑅2𝑇2

𝐴2𝜎2𝐶2𝑛4𝐹4

(S3)
 
where R is the gas constant, T is the absolute temperature, A is the contact area of the 

electrode with electrolyte, n is the number of electrons per formula during oxidation, 

F is the Faraday constant, C is the concentration of zinc ions and σ is the Warburg 

factor, which is equaled to the slope of Z' - ω-1/2. Z' and ω are imaginary resistance 

and angular speed, respectively.

Samples Rs/Ohm Rct/Ohm

Co-MnO2/CNTs 3.474 28.33

Co-MnO2 3.983 67.68

δ-MnO2 6.904 91.33



S19

Fig. S22 Enlarged parts of the GITT curves at the two platforms of the discharge process.  

Fig. S23 Linear relationship of ΔEτ and τ1/2 at the discharge process.

The GITT measurement of Co-MnO2/CNTs electrode was conducted at the 

current density of 0.1 A g-1. The charging time and rest time are 10 min and 

30 min, respectively. As shown in Fig. S16, the voltage (ΔEτ) exhibits a 

linear behavior with the square root of the titration time (τ1/2)[12]. Therefore, 

the diffusion coefficient can be calculated based on the Equation (S3):
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                                     (S4)
𝐷 =

4
𝜋 𝜏

(
𝑚𝐵𝑉𝑀

𝑀𝐵𝐴
)2(

∆𝐸𝑆

∆𝐸𝜏
)2

Here, τ is the constant pulse time 30 min, mB is the mass of the active 

material, VM is the molar volume, mB is the molecular weight, A is the 

surface area of electrode with electrode, and ΔEτ is the difference of stabilized 

open-circuit for the corresponding step[13]. Accordingly, in this Co-

MnO2/CNTs battery, the relationship between diffusion coefficient and 

(ΔEs/ΔEτ)2 can be described as Eq. S4:

                                            (S5)

𝐷1

𝐷2
=

(
∆𝐸𝑆 , 1

∆𝐸𝜏, 1
)2

(
∆𝐸𝑆 , 2

∆𝐸𝜏, 2
)2
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Fig. S24 SEM of the Co-MnO2/CNTs electrode after 10 cycles.
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