Supporting	Information
------------	-------------

	Stoichiometric composition	Notation	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺	LSSOC:Eu	
Group I	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.018Dy ³⁺	LSSOC:Eu,Dy	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.018Ho ³⁺	LSSOC:Eu,Ho	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ , 0.018Er ³⁺	LSSOC:Eu,Er	
	LiSr ₃ SiO ₄ Cl ₃	LSSOC	
Group II	LiSr _{2.97} SiO ₄ Cl ₃ :0.03Pr ³⁺	LSSOC:Pr	
	LiSr _{2.97} SiO ₄ Cl ₃ :0.03Ce ³⁺	LSSOC:Ce	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Dy ³⁺ ,0.009Ho ³⁺	LSSOC:Eu,Dy,Ho	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Dy ³⁺ ,0.009Er ³⁺	LSSOC:Eu,Dy,Er	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Dy ³⁺ ,0.009Mn ²⁺	LSSOC:Eu,Dy,Mn	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Dy ³⁺ ,0.009Nd ³⁺	LSSOC:Eu,Dy,Nd	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Dy ³⁺ ,0.009Pr ³⁺	LSSOC:Eu,Dy,Pr	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Ho ³⁺ ,0.009Er ³⁺	LSSOC:Eu,Ho,Er	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Ho ³⁺ ,0.009Mn ²⁺	LSSOC:Eu,Ho,Mn	
Group III	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Ho ³⁺ ,0.009Nd ³⁺	LSSOC:Eu,Ho,Nd	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Ho ³⁺ ,0.009Pr ³⁺	LSSOC:Eu,Ho,Pr	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Er ³⁺ ,0.009Mn ²⁺	LSSOC:Eu,Er,Mn	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Er ³⁺ ,0.009Nd ³⁺	LSSOC:Eu,Er,Nd	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Er ³⁺ ,0.009Pr ³⁺	LSSOC:Eu,Er,Pr	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Mn ²⁺ ,0.009Nd ³⁺	LSSOC:Eu,Mn,Nd	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Mn ²⁺ ,0.009Pr ³⁺	LSSOC:Eu,Mn,Pr	
	LiSr _{2.964} SiO ₄ Cl ₃ :0.036Eu ²⁺ ,0.009Nd ³⁺ ,0.009Pr ³⁺	LSSOC:Eu,Nd,Pr	

Table S1. Stoichiometric compositions and notations of the samples. Group I is the Eu²⁺-activated samples. Group II and III are used to construct and verify the host-referred binding energy and vacuum-referred binding energy (HRBE and VRBE) schemes.

Formula	LiSr ₃ SiO ₄ Cl ₃		
Crystal system	orthorhombic		
Space group	Pmna(53)		
Lattice parameters			
a (Å)	a=9.4695 Å		
b (Å)	b=6.9952 Å		
c (Å)	c=13.6800 Å		
R-Factors			
R_{wp}	11.93%		
R_p	9.22%		

Table S2 XRD refined parameters of the LSSOC host

Atom	Ox.	Wyck.	x/a	y/b	z/c
Li1	1	2d	0	1/2	0
Li2	1	2c	0	1/2	1/2
01	-2	4h	0	0.5774	0.1605
02	-2	8 i	0.6395	0.0885	0.6485
03	-2	4h	0	0.2276	0.0082
Sr1	2	4h	0	0.2220	0.1894
Sr2	2	4 e	0.2406	0	1/2
Sr3	2	4g	1/4	0.6701	1/4
Si1	4	4h	0	0.7918	0.1115
Cl1	-1	4h	0	0.1985	0.6071
Cl2	-1	8i	0.1834	0.3348	0.3736

Table S3 relevant cell parameters of the LSSOC host

Туре	Atom	Bond Length (Å)	Average Bond Length (Å)		
Eu1	03	2.479			
	01	2.517	2.870		
	02	2.603			
	02	2.603			
	Cl2	3.160			
	Cl2	3.160			
	Cl2	3.218			
	Cl2	3.218			
E 3	02	2.408			
	02	2.408			
	Cl2	2.961	2 804		
Eu2	Cl2	2.961	2.004		
	Cl1	3.044			
	Cl1	3.044			
	02	2.424			
	02	2.424			
	01	2.743			
Fu2	01	2.743	2 933		
Eus	Cl2	2.959	2.055		
	Cl2	2.959			
	Cl1	3.205			
	Cl1	3.205			

Table S4bond length of the adjacent pairs in Eu1, Eu2, and Eu3.

n	Ln	ΔE(n+1,7,2+)	E _{fd} (n+1,2+,free)	ΔE(n,6,3+)	E _{fd} (n,3+,free)	E _{exch} (n,3+,F)
0	La	5.61	-0.94	-	-	
1	Ce	4.13	-0.35	5.24	6.12	
2	Pr	2.87	1.56	3.39	7.63	
3	Nd	2.43	1.93	1.9	8.92	
4	Pm	2.34	1.96	1.46	9.24	
5	Sm	1.25	3	1.27	9.34	
6	Eu	0	4.22	0	10.5	
7	Gd	4.56	-0.2	-1.34	11.8	
8	Tb	3.31	1.19	3.57	7.78	1.0
9	Dy	2.27	2.17	2.15	9.25	0.74
10	Но	2.4	2.25	1.05	10.1	0.51
11	Er	2.58	2.12	1.12	9.86	0.35
12	Tm	1.72	2.95	1.28	9.75	0.28
13	Yb	0.433	4.22	0.236	10.89	0.22
14	Lu	-		-1.02	12.26	0.15

Table S5 Parameter values (in eV) that define the 4f and 5d binding energy curves for the divalent and trivalent lanthanides in compounds.

Fig. S2. The fitting TL curve of band A and band B in LSSOC:Eu,Er. And the fitting TL curve only the bands B decided by Er under some heating rate of 1.5, 1.2, 0.9, 0.6, 0.3K/s, respectively.

Fig. S3. The TL curves ($\times 10^6$) which were been codoped by two species of the six ions (Dy³⁺, Ho³⁺, Er³⁺, Mn²⁺, Nd³⁺, Pr³⁺) with LSSOC:Eu at the heating rate of 0.9 K/s.

Fig. S4. (a) Water resistance tests of the LSSOC:Eu,Ho after being placed in tap water for different time. (b) Temperature resistance tests of the LSSOC:Eu,Ho after being sintered in tube furnace for 1 h at different temperature.

Fig. S5. Intensity of readout signal from the LSSOC:Eu,Ho under high-temperature thermal stimulation (100 °C, from the second minute). Before the readout, the sample was exposed by UV light for 10 min and kept in the dark for 10 days at RT.