Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

for

MoSe₂/C₆₀ Heterojunction May Be Efficient for Photovoltaic Applications: Time-Domain Ab Initio Analysis of Interfacial Charge Separation and Recombination Dynamics

Pingzhi Zhang,^{1#} Ting Xue,^{1#} Zhiguo Wang,¹ Wei Wei,² Xiaoyin Xie,^{3*} Ran Jia,^{2*} Wei Li^{1*}

¹School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, PR China ²Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 130023 Changchun, PR China ³School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, 435003, China

Both authors contributed equally

*Corresponding authors: xyxie@hbpu.edu.cn (X.Y.X.) jiaran@jlu.edu.cn (R.J.) weili@hunau.edu.cn (W.L.)

Figure S1. Band edge energies of the TMD/ C_{60} heterostructures, the pristine MoSe₂ and WSe₂, and the pristine C_{60} calculated using PBE, with vacuum energy as reference level.

Figure S2. Atom and orbital resolved density of states for (a) $MoSe_2/C_{60}$ and (b) WSe_2/C_{60} calculated using PBE function with 4x4x1 kpoints.

Figure S3. The center of mass position of C_{60} in a 2ps MD trajectory for (a) $MoSe_2/C_{60}$ and (b) WSe_2/C_{60} heterostructures. Time evolution of the interlayer distances for (a) $MoSe_2/C_{60}$ and (b) WSe_2/C_{60} heterostructures. Interlayer distance is defined as the distance between the bottom C atom of C_{60} and the top of Se atom of TMD.

	Electron transfer	Interface charge	Intra-TMD
		recombination	recombination
MoSe ₂ /C ₆₀	4.48x10 ⁻⁵	3.02x10 ⁻⁵	1.87x10 ⁻³
WSe_2/C_{60}	4.41x10 ⁻⁵	1.28x10 ⁻⁵	1.78×10^{-3}

Table S1. Computed donor-acceptor overlap (arb. unit) based on the optimized groundstate structure at 0K.

	Table S2.	. Lowest-lying	excitation energy	computed b	y delta-SCF	approach
--	-----------	----------------	-------------------	------------	-------------	----------

	, 0	0,	1 /	11	
	MoSe ₂ /C ₆₀	WSe_2/C_{60}	MoSe ₂	WSe ₂	C ₆₀
Excitation energy (eV)	1.45	1.39	1.45	1.56	1.64

Table S3. The calculated key orbital energies and band offset for electron transfer (TMD CBM/C₆₀ LUMO) and charge recombination (C₆₀ LUMO/TMD VBM) using PBE, PBE+SOC level of theory for $MoSe_2/C_{60}$ and WSe_2/C_{60} heterostructures. Unit in eV.

		PBE	PBE+SOC	
	MoSe ₂ -CBM	1.487	1.378	
	C ₆₀ -LUMO	1.002	0.902	
MoSe ₂ /C ₆₀	MoSe ₂ -VBM	-0.048	-0.05	
	MoSe ₂ -CBM/C ₆₀ -	0.485	0.476	
	LUMO	0.485	0.470	
	WSe ₂ -CBM	1.586	1.250	
	C ₆₀ -LUMO	0.787	0.547	
WSe_2/C_{60}	WSe ₂ -VBM	-0.051	-0.052	
	WSe ₂ -CBM/C ₆₀ -	0.700	0 703	
	LUMO	0.799	0.703	
	CBM	1.371	1.288	
MoSe ₂	VBM	-0.075	-0.047	
	VBM/CBM	1.446	1.335	
	CBM	1.479	1.207	
WSe ₂	VBM	-0.073	-0.053	
	VBM/CBM	1.552	1.26	