Supporting Information

Constructing heterolytic cleavage process of water on Ni₃N nanosheets through single transition metal doping for ultra-efficient alkaline hydrogen evolution

Wansen Ma^a, Meng Wang^a, Chaowen Tan^a, Jiancheng Wang^b, Yanan Dai^b, Liwen Hu^a, Xuewei Lv^a, Qian Li^{c,d}, Jie Dang^{a,*}

^a College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, PR China

^b Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, PR China

[°]National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, PR China

^d State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China

*Corresponding author:

Jie Dang

E-mail: jiedang@cqu.edu.cn

Phone: +86-23-65112631; Fax: +86-23-65112631

Address: College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China

Jie Dang ORCID: https://orcid.org/0000-0003-1383-8390

Wansen Ma and Meng Wang contributed equally.

Experimental section

Synthesis of M-doped nanosheets: V-doped nanosheets were prepared on nickel foam via a two-step method. Firstly, nickel foam substrate was pretreated with 3M HCl to remove the oxide layer and impurity on the surface, and then cleaned by deionized water and ethanol for several times. Secondly, nickel foam supported vanadium doped nickel hydroxide nanosheets were synthesized by a modified hydrothermal reaction. Typically, 0.05 mmol NH₄VO₃, 0.95 mmol Ni(CH₃COO)₂·4H₂O, 5 mmol of CO(NH₂)₂ and 2 mmol NH₄F were dissolved in 20 mL deionized water under stirring to form a homogeneous solution. The solution and a piece of nickel foam (NF, 2cm*3cm) were transferred into a 50 mL Teflon-lined autoclave, sealed and kept at 120 °C for 4h, to obtain vanadium doped nickel hydroxide (V-Ni(OH)₂/NF) nanosheets array, which was further cleaned with water and ethanol, respectively. Finally, the nanosheets was fabricated by nitridation of the prepared cobalt doped nickel hydroxide nanosheets in a tube furnace system at 420 °C for 2h under the high purity NH₃ atmosphere which was named as V-Ni₃N. For comparison, the pure Ni₃N was also synthesized with similar procedure without adding NH₄VO₃ (denoted as Ni₃N/NF). V-Ni₃N-2 and V-Ni₃N-10 were obtained by varying the atomic ratios of V:Ni in the hydrothermal solution to 0.02:0.098 and 0.1:0.9, respectively. The corresponding commercial 20 wt% Pt/C powder were dipped on Ni foam for the comparison experiment.

Pt/C electrode as a reference was prepared by the following method: 21.5 mg of commercial Pt/C was mixed with 110 μ l of deionized water, 106 μ l of alcohol and 5 μ l

of nafion to form a slurry, then which was dropped on the NF $(1 \times 1 \text{ cm}^2)$ and dried at room temperature.

Cr-Ni₃N, Co-Ni₃N, Mn-Ni₃N, Mn-Ni₃N, W-Ni₃N and Fe-Ni₃N were synthesized by using Cr(NO₃)₂·9H₂O, Co(NO₃)₂·6H₂O, Mn(NO₃)₂·4H₂O, Na₂MoO₄, Na₂WO₄ and Fe(NO₃)₂·9H₂O, respectively. Transition metal doping can be adjusted by changing the type of transition metal salts. The molar ratio of transition metal salt to Ni(NO₃)₂·6H₂O is 0.05 mmol : 0.95 mmol. Other steps were the same as those for V-Ni₃N.

Materials characterization: To analyze the samples composition and microstructure, X-ray diffraction (XRD) was conducted on a PANalytical X'Pert Powder (Panalytical B.V.). Field-emission scanning electron microscopy (FESEM) analysis was performed on the JEOL JSM-7800F to characterize the surface morphologies. High-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive spectroscopy (EDS) mapping were performed on the Talos F200S. X-ray photoelectron spectroscopy (XPS) experiments were performed on the ESCALAB250Xi, and all of the XPS binding energies were calibrated using the contaminant carbon (C1S) as a reference. Ultraviolet Photoemission Spectroscopy (UPS) experiments were collected at ThermoFisher ESCALAB 250Xi. Electron paramagnetic resonance (EPR) spectra were measured by Bruker A300 spectrometer at 20 °C.

Electrochemical measurement: All electrochemical measurements were performed on CHI660E electrochemical work station (Shanghai Chenhua Instrument

Co., Ltd., China) by using the typical three-electrode set-up at 25°C. V-Ni₃N/NF-5 was used directly as the work electrode (1 cm⁻² electrode area), and a Hg/HgO electrode and a Pt plate served as the reference electrode and the counter electrode, respectively. For the HER in alkaline media, all the potentials were recorded with respect to the reversible hydrogen electrode (RHE) using equation ($E_{RHE} = E_{Hg/HgO} + 0.098 + 0.059*$ pH), where E_{RHE} is the potential referred to RHE and $E_{Hg/HgO}$ is the practically applied voltage window. Linear sweep voltammograms (LSV) were tested at a scan rate of 2 mV s⁻¹ in 1M KOH after 30 cyclic voltammetry (CV) testing. The onset potential was defined as the potential required when the current density of 1 mA cm⁻². Electrochemical impedance spectra (EIS) were recorded with a frequency ranging from 10⁶ to 0.01 Hz and an amplitude of 5 mV at a fixed potential. The voltage is -100 mV vs. RHE. In HER measurements, all polarization curves were iRs-corrected (90%) using the equation: $E_{iRs-corrected} = E - iRs$, where E is the original potential, Rs is the solution resistance, i is the corresponding current, and E_{iRs-corrected} is the iRs-corrected potential. The electrochemically active surface area (ECSA) was estimated by measuring the capacitive current associated with double-layer charging from scan-rate dependence of CVs and the scan rates were 20-60 mV s⁻¹. The polarization curves before and after cycling are recorded under quasi-equilibrium conditions at a scan rate of 2 mV s⁻¹. The capacitance current was measured within the potential range of the non-Faraday region.

Computational details: Plane-wave density functional theory (DFT) calculations were performed on CASTEP code of the Materials Studio package of Accelrys Inc. Generalized gradient approximation (GGA) in the form of Perdew–Burke–Ernzerhof (PBE) functional was employed for the DFT exchange correlation energy and ultrasoft pseudo-potentials are used for the core electrons. A plane-wave basis set with an energy cutoff energy of 500 eV was assigned. The force atomic relaxation was 0.01 eV Å⁻¹. The Ni₃N (001) surface was modeled by a periodic five-layer slab repeated in 2×2 surface unit cell with a vacuum width of 10 Å between the slabs along the Z axis, where all atoms were fully relaxed. The water adsorption energy E_{H2O} is calculated by $E_{H2O} =$ $E_{(surf+H2O)}-E_{(surf)}$ - E_{H2O} , where $E_{(surf+H2O)}$ and $E_{(surf)}$ are the total energies of the surface with and without the H₂O adsorbate, and $E_{(H2O)}$ is the energy of a free water molecule. Additionally, the hydrogen adsorption free energy ΔG_{H^*} is calculated by $\Delta G_{H^*} =$ $E_{(surf+H)}-E_{(surf)}-1/2E_{(H2)}+\Delta E_{ZPE}$ -T ΔS , where ΔE_{ZPE} and ΔS are the difference in the zero-point energy and entropy between the adsorbed H atom and the gaseous phase H₂. At T=289.15 K, ΔG_{H^*} can be calculated by $\Delta G_{H^*} = E_{(surf+H)}-E_{(surf)}-1/2E_{(H2)}+0.24 \text{ eV}.^{1-}$

Figure S1. (a-d) Optical images of different samples after the hydrothermal reaction with different amounts of vanadium doping (0-10%). Optical images of Ni_3N (e), V- Ni_3N-2 (f), V- Ni_3N-5 (denoted as V- Ni_3N) (g), and V- Ni_3N-10 (h).

Interestingly, it shows that as the vanadium content increases, the color of the hydrothermal product gradually darkens, changing into light green, green, dark green and yellow-green.

Figure S2. (a-b) SEM images of V-Ni(OH)₂/NF; TEM image (c) and HRTEM image

(d) of V-Ni₃N nanosheets.

Figure S3. (a-b) SEM images of and Ni₃N; (c-d) SEM images of V-Ni₃N-2; (e-f) SEM images of V-Ni₃N-10. (g) Energy dispersive spectrometry (EDS).

After the nitridation process at 420 °C, the nanosheets structure of the catalysts with the doping amount of V of 0% and 2% collapsed to varying degrees. However, when the doping amount is increased to 5% and 10%, the catalysts inherit the excellent nanosheet morphology.

Figure S4. SEM images of transition metal doped Ni₃N, respectively.

As we can see in Fig. S4, different doped transition metals have different effects on the microstructure of Ni₃N. The hydroxides generated by the hydrothermal reaction are all in the form of nanosheets, and all the nanosheets show different degrees of collapse and sintering after annealing. For example, after annealing, the nanosheets of V-Ni₃N become thinner due to the removal of water molecules, and some tiny nanoparticles appear on the surface of the nanosheets. Similar to this are Co-Ni₃N and Mn-Ni₃N. Mo-Ni₃N exhibits nanosheet morphology similar to MoS₂. However, Cr-Ni₃N, Fe-Ni₃N and W-Ni₃N show some nanoparticle. In short, different transition metals have different physicochemical properties, so their effects on the morphology of Ni₃N are also different.

Figure S5. XRD patterns.

Table S1. Details of the crystal structures	s of Ni ₃ N, Ni(OH) ₂ ,	and Ni.
---	---	---------

Samples	Crystal	Space group	a (Å)	c (Å)
Ni ₃ N (JCPDS No.89-	Hexagonal	P6322(182)	4.616	4.298
5144)				
Ni(OH) ₂ (JCPDS	Hexagonal	P-3m1 (164)	3.114	4.617
No.73-1520)				
Ni (JCPDS No.04-	Cubic	Fm-3m(225)	3.524	3.524
0850)				

Table S2. Elemental content of V-Ni₃N.

Figure S6. XPS survey spectrums of Cr-Ni₃N; High-resolution XPS spectra of Ni (b),

N (c) and Cr (d).

Figure S7. XPS survey spectrums of Co-Ni₃N; High-resolution XPS spectra of Ni (b),

N (c) and Co (d).

Figure S8. XPS survey spectrums of Mn-Ni₃N; High-resolution XPS spectra of Ni (b), N (c) and Mn (d).

Figure S9. XPS survey spectrums of Mo-Ni₃N; High-resolution XPS spectra of Ni (b),

N (c) and Mo (d).

Figure S10. XPS survey spectrums of W-Ni $_3$ N; High-resolution XPS spectra of Ni (b), N (c) and W (d).

Figure S11. XPS survey spectrums of Fe-Ni₃N; High-resolution XPS spectra of Ni (b),

N (c) and Fe (d).

Figure S12. (a) High-resolution N 2s XPS spectra, and (b) High-resolution O 2s XPS spectra.

The positive shift of N 2s and O 1s peak in V-Ni₃N/NF-5 relative to that for Ni₃N/NF corroborated the efficient electron transfer after V doping and altered surface charge state.

Table S3. Elemental content of V-Ni₃N.

Element	Atomic Fraction
V	5.2
Ni	94.8

Figure S13. LSV curves of V-Ni₃N/NF-5, V-Ni₃N/NF-2, and V-Ni₃N/NF-10 for HER.

The experiments with different doping levels were also carried out to get an optimized condition (**Figure S13**). We found that the V-Ni₃N/NF-5 (denoted as V-Ni₃N) shows the highest activity, characterized by the lowest overpotentials, and smallest R_{ct} . Meanwhile, the experimental results show that as the amount of vanadium increases, the C_{dl} of the material increases.

Figure S14. Cyclic voltammetry curves recorded in 1 M KOH at scan rates of 10, 20,

30, 40, 50 and 60 mV s⁻¹.

Figure S15. (a-b) SEM images of the catalyst after electrochemical test. (c-f) XPS survey spectrum and high-resolution XPS spectra of V-Ni₃N/NF-5.

The analysis reveals that the macroscopic morphology and valence states of the elements on the surface of V-Ni₃N have no significant changes, which further proves that the catalyst has excellent catalytic stability and corrosion resistance.

Sample	Mass of substrate	Sample area	Mass density
	(mg)	(cm ²)	(mg cm ⁻²)
V-Ni ₃ N/NF-5	37.2	1*1*2=2	1.85
V-Ni ₃ N/NF-10	35.6	1*1*2=2	1.05
V-Ni ₃ N/NF-2	37.6	1*1*2=2	2.04
Ni ₃ N/NF	36.7	1*1*2=2	1.6
V-Ni(OH) ₂ /NF	35.1	1*1*2=2	0.8
NF	33.5	1*1*2=2	_

 Table S4. Sample masses after different processing stages.

Figure S16. Optimized calculation model constructed by replacing Ni with

corresponding transition metal elements.

Figure S17. D-band center of catalysts.

Catalysts	Electrolytes	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Reference
	114 // 2011	51		Chem Eng J
Ku-N1 ₃ N	ІМ КОН	51	55	2023;451:138698
N: N/NE		07	Int J Hydrog Energy	
IN13IN/INF	ТМКОП	43	97	2021;46:27037-27043
N; N/N;@C750	1М КОЦ	172	63	Int J Hydrog Energy
INI3IN/INI@C730	ТМКОН	172 63	03	2021;46:30739-30749
N; N/W/ N	Ni ₃ N/W ₅ N ₄ 1M KOH 31 34	24	Appl Catal B: Environ	
N13N/W5N4		31	34	2022;307:121198
Ir-Ni ₃ N 1M KOH 66.7	66 76	Appl Surf Sci		
	IM KOH	00.7	00.70	2023;637:157896
Ni N Co N/C	1M KOH	59		Appl Catal B: Environ
1N131N-C031N/C	IM KOH	50	70.2	2021;297:120461
Mn-	1M KOH	93 113 Appl 2023;6	Appl Surf Sci	
NiS _x /NiO/Ni ₃ N@NF			113	2023;619:156789
Ni ₃ N-V ₂ O ₃	1М КОН	53	63	Chem Eng J
				2021;415:128864
Ni ₃ N/Mo ₂ N	1М КОН	20	33.8	ACS Catal
				2023;13:4091-4100

 Table S5. Comparison of the overpotentional at 10 mA cm⁻² with recently reported

 other electrocatalysts.

N; N/NE	NG-N/NE 1M KOH 121 109	Electrochimica Acta		
111311/111		121	109	2016;191:841.
Co Ni N		20	41.6	J Phys Chem Lett
CO-INI3IN	IM KOH	50	41.0	2021;12(6):1581-1587.
NiMo HNRs/Ti		02	76	J Mater Chem A
mesh		92	70	2015;3:20056.
	IMKOU	()	27	Adv Mater
IN13IN-V IN/INF	тм кон	04	57	2019;31(23):1901174.
	1М КОН	52	32.4	Chem Commun
Ku/IN13IN-IN1		53		2020;56(15):2352-2355.
				ACS Appl Mater
Ni/Co ₂ N	1М КОН	16.2	60.5	Interfaces
				2020;12:29357-29364.
Fe-Ni ₃ C-2%		202	12	Angew Chem Int Ed
nanosheets		292	43	2017;56:12566.
Epitaxial		104	156	Adv Mater
in-growth Co-Ni ₃ N		194	150	2018;30(13):1705516.
	1M			ACS Sustainable
MOF-Derived Ni ₃ N	KOH+0.5M	47	67	Chem Eng
	Urea			2020;8(19):7414-7422.
V doped Co ₄ N	1М КОН	37	44	Angew Chem Int Ed
				2018;57(18):5076-5080.

	Ni ₃ N/C 1M KOH 64 48	40	Angew Chem Int Ed	
N1 ₃ N/C		2019;58(22):7445-7449.		
NT NT'		0.6	N/A	J Am Chem Soc
N-N1	ІМ КОН	96		2017;139:12283.
Mao Ali Nio			50	Adv Mater
MOO3/INI-INIO	ТМКОН	02	39	2020;32(39):2003414.
High-Valance		Mo:12	64	
State	1М КОН	W:40	118	
Doped Ni ₃ N		V:10	110	2019;9:9332-9338.
C-02/C-4N		20	((Appl Catal B: Environ
CeO2/Co4N	ІМ КОН	30	00	2020;277:119282.
DuN' MONES		25	30	Adv Sci
RuN1-NCNFs	тм кон			2020;7:1901833.
Co-Mo ₅ N ₆	1М КОН	19	12	Adv Energy Mater
				2020;10:2002176.
This work	1M KOH	15	28.7	-

References

[1] D, Merki, S. Fierro, H. Vrubel and X. Hu, Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water, *Chem. Sci.*, 2011, **2**, 1262-1267.

[2] H. Jin, H. Zhang, J. Chen, S. Mao, Z. Jiang and Y. Wang, A general synthetic approach for hexagonal phase tungsten nitride composites and their application in the hydrogen evolution reaction, *J. Mater. Chem. A*, 2018, **6**, 10967-10975.

[3] E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis and R. E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction, *J. Am. Chem. Soc.*, 2013, **135**, 9267-9270.