Supporting Information (SI)

$Hg_3O_2(NO_3)F$: A mercury nitrate oxyfluoride with unprecedented $[(Hg_3O_2F)^+]_{\infty}$ cationic framework and excellent optical anisotropy

Yi-Lei Lv, a Lei Huai, Yu-Long Wei, Liang Ma, Yue-Qi Wei, Wenlong Liu, Ru-Ling Tang*a,b

- a. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
- b. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.

Supporting Information Index

Tables and Figures

Table S1. Important bond lengths (Å) and bond angles (°) for Hg₃O₂(NO₃)F.

Table S2. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$)

for Hg₃O₂(NO₃)F. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Table S3. The reported inorganic nitrate halides.

Table S4. The birefringence of some Hg-based compounds.

Figure S1. The crystal structure of Hg₃O₂(NO₃)₂.

Figure S2. Theoretical calculations of Hg₃O₂(NO₃)₂.

Figure S3. The arrangements of NO₃ groups in $Hg_3O_2(NO_3)F$ (a) and $Hg_3O_2(NO_3)_2$ (b).

Figure S4. EDS images and results of Hg₃O₂(NO₃)F.

Bond Length(Å)			
$Hg(1) = O(1)^{1}$	2.121(5)	$Hg(2) = O(1)^5$	2.067(4)
Hg(1) = O(1)	2.121(5)	$Hg(2)^{3}-O(1)$	2.067(4)
Hg(1) - F(1)	2.383(5)	$Hg(1)^{6}-F(1)$	2.328(6)
$Hg(1) - F(1)^4$	2.328(6)	N(1) = O(2)	1.253(11)
$Hg(1)^{1} - O(1)$	2.121(5)	N(1)=O(3)	1.249(10)
$Hg(1)^1 - F(1)$	2.383(5)	N(1)—O(4)	1.254(9)
Bond Angles (deg)			
$O(1)^1 - Hg(1) - O(1)$	177.7(2)	$F(1)^4 - Hg(1) - F(1)$	133.47(13)
$F(1)^4 - Hg(1) - O(1)$	90.46(12)	$O(1) - Hg(2) - O(1)^5$	169.52
F(1) - Hg(1) - O(1)	88.90(11)	O(2) = N(1) = O(4)	119.6(11)
$F(1) = Hg(1) = O(1)^1$	88.90(11)	O(3) = N(1) = O(2)	120.2(12)
$F(1)^4 - Hg(1) - O(1)^1$	90.46(12)	O(3) = N(1) = O(4)	120.1(12)

Table S1. Important bond lengths (Å) and bond angles (°) for $Hg_3O_2(NO_3)F$.

¹+X,1/2-Y,+Z; ²1/2-X,-1/2+Y,1/2+Z; ³1/2-X,1-Y,1/2+Z; ⁴1/2+X,+Y,3/2-Z; ⁵1/2-X,1-Y,-1/2+Z; ⁶-1/2+X,+Y,3/2-Z

atom	Wyckoff site	x	у	Z	$U_{ m eq}{}^{ m a}/{ m \AA}^2$
Hg(1)	4c	3676.6(4)	2500	6318.7(4)	10.51(12)
Hg(2)	8d	2701.8(4)	5096.5(2)	3832.9(3)	12.48(11)
O(1)	8d	3659(6)	4430(4)	6378(5)	10.9(10)
F(1)	4c	1745(7)	2500	9015(8)	19.6(13)
N(1)	8d	4557(10)	2488(12)	11280(9)	15.2(16)
O(2)	8d	4793(16)	1372(9)	11020(18)	28(3)
O(3)	8d	5201(16)	3243(11)	10139(15)	29(3)
O(4)	8d	3588(13)	2839(8)	12629(12)	29(3)

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for N Hg₃O₂(NO₃)F. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

	Compounds	Space group	Dimension	Birefringence
1	$Cs_2Pb(NO_3)_2Br_2$	I4 ₁ /amd	1D	0.147@546 nm
2	PbCdF(SeO ₃)(NO ₃)	Pca2 ₁	2D	0.055@1064nm
3	Pb ₂ (NO ₃) ₂ (H ₂ O)F ₂	Amm2	3D	0.230@1064nm
4	CsHgNO ₃ Cl ₂	P6 ₃ /mmc	2D	0.145@546 nm
5	$Rb_2SbF_3(NO_3)_2$	P2 ₁	3D	0.06@1064nm
6	RbSnF ₂ NO ₃	C2/m	3D	0.05@1064nm
7	(NH ₄) ₃ SbF ₃ (NO ₃) ₃	P21	0D	0.098@546nm
8	$(NH_4)_3SbF_4(NO_3)_2$	Pnma	0D	0.164@546nm
9	$Na_3Rb_6(CO_3)_3(NO_3)_2Cl \cdot (H_2O)_6$	P6 ₃ /mcm	3D	0.14 @ 546 nm
10	$Cs_2PbCl_2(NO_3)_2$	I4 ₁ /amd	2D	
11	(NH ₄) ₂ SiF ₆ ·NH ₄ NO ₃	P6 ₃ /mmc	0D	
12	$(NH_4)_2Sn_2F_4(NO_3)_2$	C2	0D	
13	$[((NH_3)_5Co)_2O_2](NO_3)_2Cl_3 \cdot 2H_2O$	Pnnm	0D	
14	Ag ₂ ClNO ₃	Pnma	3D	
15	Ag ₂ INO ₃	P2 ₁ 2 ₁ 2 ₁	3D	
16	CaClNO ₃ ·2H ₂ O	Pbca	2D	
17	HgINO ₃	Pnma	2D	
18	K ₂ SbF ₃ (NO ₃) ₂ ·KNO ₃	Cmc2 ₁	3D	
19	NaSbF ₃ NO ₃ ·H ₂ O	Pbca	2D	
20	Pb ₃ F ₅ NO ₃	PĪ	2D	
21	Rb ₃ CoCl ₄ NO ₃	Pnma	3D	
22	$Cs_3Sb_2F_6(NO_3)_3$	C2/ _C	3D	
23	$K_3Sb_2F_7(NO_3)_2$	C2/ _C	3D	
24	$K_4Sb_2F_6(NO_3)_3$	Pbcn	3D	
25	$Rb_4Sb_2F_6(NO_3)_4$	P2 ₁	3D	
26	RbTeF ₄ (NO ₃)	P1	3D	
27	RbTeF ₄ (NO ₃)	PĪ	3D	
28	Co(NH ₃) ₅ NO ₂ Cl(NO ₃)	Pna2 ₁	0D	
29	KBiCl ₃ (NO ₃)	$P2_{1/C}$	3D	
30	$Ag_3I(NO_3)_2$	P2 ₁ 2 ₁ 2 ₁	3D	
31	Ag ₂ HgI ₂ (NO ₃) ₂ ·H ₂ O	Pbam	3D	

 Table S3. The reported inorganic nitrate halides. ("—" means no concrete data)

32	KSbF ₃ NO ₃	Pbca	2D	
33	(NH ₄) ₂ (HF ₂)(NO ₃)	$Pmc2_1$	0D	
34	K ₃ (HF ₂)(NO ₃) ₂	Pbam	0D	
35	Rb ₃ SbF ₃ (NO ₃) ₃	<i>P</i> 2 ₁	3D	
36	$Cs_3MI_4NO_3$ (M = Zn, Co, Cd)	Pnma	3D	
37	K ₃ ZnCl ₄ NO ₃	Pnma	3D	
38	$[(UO_2)_4F_{13}][Sr_3(H_2O)_8](NO_3)\cdot H_2O$	PĪ	2D	
39	K ₂ TeF ₅ NO ₃	P4/nmm	3D	
40	K ₂ SiF ₆ ·KNO ₃	P6 ₃ /mmc	2D	
41	$Cs_3 ((Sn_3F_6)_2H) (NO_3)_4$	PĪ	2D	
42	Cu _{36.6} Cl _{6.7} (NO ₃) _{2.6} (OH) _{63.9} ·2.1H ₂ O	P6 ₃ /mmc	3D	
43	$(OsNO (NH_3)_4 NO_3) Cl_2 \cdot 0.5(H_2O)$	$C2/_C$	0D	
44	$[Rb_2Cd(Cl)(NO_3)(C_2O_4)(H_2O)]$	Pbca	3D	
45	Ag ₂ BrNO ₃	Pnma	3D	
46	BrNO ₃	P2 ₁ 2 ₁ 2 ₁	0D	

Compounds↩	Space group⇔	Hg polyhedra	Birefringence←
Ba₂HgTe₅←	<u>Pnma</u> ← [¬]	HgTe ₂ ←	0.643@2090 nm<⊐
HgB₂S₄←	$P2_1/n \in \mathbb{Z}$	HgS₂←	0.52@1064nm [←]
HgS←	<i>P</i> 3 ₂ 21←	HgS₂←	0.29@2100nm↩⊐
BaHgGeSe₄←	Ama2←	HgSe₄←	0.27@2090 nm↩
EuHgGeS₄←	Ama2←	HgS₄←	0.25@2090 nm↩
$Cs_2HgI_2Cl_2$	$P2_1 \leftarrow \exists$	HgCl ₂ I ₂ ←	0.198@1064nm⇔
Hg ₃ (Te ₃ O ₈)(SO ₄)←	$P2_1/m^{r}$	HgO₅,HgO ₇ ←	0.166@1064nm [,]
BaHgSe₂←	$Pmc2_1 \leftarrow$	HgSe ₃ , HgSe ₂ ←	0.1473@2090 nm⇔
CsHgNO ₃ Cl ₂ ←	$P6_3/mmc \leftarrow$	$HgO_6Cl_2 \leftarrow$	0.145@546 nm↩
CsHgClSO ₄ ·H ₂ O←	<u>Pmmn</u> ← [□]	HgO₅Cl←	0.12@546 nm ^{∢⊐}
Hg ₃ (SeO ₃) ₂ (SO ₄)⇔	$P2_1 \in \mathbb{Z}$	HgO5,HgO7,HgO8€	0.118@546 nm↩
CuHgPS₄←	$Pna2_1 \in \mathbb{Z}$	HgS₄←	0.11@2090 nm↩
AgHgPS₄←		HgS₄←	0.11@2090 nm↩
Hg ₃ O ₂ SO ₄ ←	<i>P</i> 3 ₂ 21←	HgO ₆ ← [□]	0.10@546 nm⇔
HgTeO ₂ F(OH)←	$Pca2_1 \leftarrow$	HgO₂← [□]	0.09@1064 nm
BaHgS₂←	$Pmc2_1 \leftarrow \square$	HgS₄, HgS₂←	0.07@2090 nm↩
LiHgPO₄←	<i>P</i> 421 <i>m</i> ← [¬]	HgO ₆ ←⊐	0.068@1064 nm↩
$Hg_3P_2S_8$	Aba2↩□	HgS₄←⊐	0.05@2090 nm<⊐

 Table S4. The birefringence of some Hg-based compounds.

 \leftarrow

Figure S1. The crystal structure of Hg₃O₂(NO₃)₂.

Figure S2. Theoretical calculations of Hg₃O₂(NO₃)₂.

(a) Calculated band gap; (b) Density of states (DOS). the fermi level is set at 0 eV; and (c) Calculated refractive index dispersion curves of $Hg_3O_2(NO_3)_2$.

Figure S3. The arrangement of NO₃ groups in $Hg_3O_2(NO_3)F$ (a) and $Hg_3O_2(NO_3)_2$ (b).

The molar ratio of Hg : $\mathbf{O}:\mathbf{N}:\mathbf{F}$ from the EDS results.

Compound		Molar ratio
1	Hg:O:N:F	29.89:49.93:10.05:10.13=2.97:4.97:1:1
2	Hg:O:N:F	29.97 : 50.10 : 9.93 : 10=3.01 : 5.04 : 1 : 1
3	Hg: O: N: F	30.08 : 49.94 : 9.89 : 10.09=3.04 : 5.04 : 1 : 1.02

References:

- M. K. Kim, V. Jo and K. M. Ok, New variant of highly symmetric layered perovskite with coordinated NO₃⁻ ligand: hydrothermal synthesis, structure, and characterization of Cs₂PbCl₂(NO₃)₂, *Inorg. Chem.*, 2009, 48, 7368–7372.
- 2. Leclaire, M. M. Borel, Identification et Structure du Chlorure Nitrate de Calcium Dihydrate, *Acta Cryst*, 1978, **34**, 902–904.
- L. J. Jouffret, J. M. Hiltbrunner, M. Rivenet, N. Sergent, S. Obbade, D. Avignant, and M. Dubois, L. J. Jouffret, J. M. Hiltbrunner, M. Rivenet, N. Sergent, Saïd Obbade, *Inorg. Chem.*, 2016, 55, 12185–12192.
- 4. R. Vaidhyanathan, S. Natarajan, and C. N. R. Rao, Open-Framework Rubidium Halides Incorporated in Cadmium Oxalate Host Lattices, *J. Solid State Chem.*, 2002, **167**, 274–281.
- 5. M. Bourgault, B. Ducourant, D. Mascherpa-corral et R. Fourcade, Structure cristalline et moleculaire de KSbF₃NO₃, *J. Fluorine Chem.*, 1981, **17**, 215–224.
- 6. R. Ouarsal, M. Lachkar, M. Bolte and B. El Bali, Trirubidium cobalt tetrachloride nitrate(V), Rb₃CoCl₄NO₃, *Acta Crystallogr. E Structure Report*, 2005, **61**, i44–i45.
- 7. Leclaire and M. M. Borel, Identification et structure du chlorure nitrate de calcium dihydraté, *Acta Cryst. B Structural Crystallography and Crystal Chemistry*, 1978, **34**, 902–904.
- S. Farhadi and J. Safabakhsh, Solid-state thermal decomposition of the [Co(NH₃)₅CO₃]NO₃·0.5H₂O complex: A simple, rapid and low-temperature synthetic route to Co₃O₄ nanoparticles, *J. Alloys Compd.*, 2012, **515**, 180–185.
- 9. M. Cheng, W. Q. Jin, Z. H. Yang and S. L. Pan, Large optical anisotropy-oriented construction of a carbonate-nitrate chloride compound as a potential ultraviolet birefringent material, *Chem. Sci.*, 2022, **13**, 13482–13488.
- Z. Chen, H. Zeng, S. J. Han, Z. H. Yang and S. L. Pan, From BaCl₂ to Ba(NO₃)Cl: significantly enhanced birefringence derived from π-conjugated [NO₃], *New J. Chem.*, 2021, 45, 17544–17550.
- V. M. Miskowski, B. D. Szntarsiero, W. P. Schaefer, G. E. Ansok, and H. B. Gray, Crystal Structure and Polarized Electronic Spectra of a (u-Superoxo) dicobalt(III) Complex: [((NH₃)₅Co)₂O₂](NO₃)₂Cl₃·2H₂O, *lnorg. Chem.*, 1984, 23, 172–176.
- 12. D. T. Tran, P. Y. Zavalij, S. R. J. Oliver, Pb₃F₅NO₃, a Cationic Layered Material for Anion-Exchange, *J. Am. Chem. Soc*, 2002, **124**, 3966–3969.
- M. Bourgault, B. Ducourant, D. M. Corral, R. Fourcade, Structure Cristalline de NaSbF₃NO₃·H₂O. Etude de La Liaison Hydrogene O-H-X (X=Cl, Br, NO₃), *J. Fluorine Chem.*, 1981, 17, 305–315.
- M. Bourgault, B. Ducourant, R. Fourcade, Sur un nouveau compose doubleur de frequence, synthese, et structure du nitrate-bis-nitratotrifluoroantimonate de potassium K₂SbF₃(NO₃)₂·KNO₃, *J. Solid-State Chem.*, 1983, **50**, 79–85.
- 15. K. Persson, The Crystal Structure of Ag₂INO₃, Acta Cryst, 1979, **35**, 302–306.
- 16. K. Persson, Structure of Disilver Chloride Nitrate, Acta Cryst, 1979, 35, 1432–1435.
- 17. N. Buchholz, R. Mattes, The Double Sale (NH₄)₂SiF₆·NH₄NO₃, *Mat. Res. Bull*, 1988, 23, 755–758.
- G. Peng, Y. Yang, Y. H. Tang, M. Luo, T. Yan, Y. Q. Zhou, C. S. Lin, Z. S. Lin and N. Ye, Collaborative enhancement from Pb²⁺ and F⁻ in Pb₂(NO₃)₂(H₂O)F₂ generates the largest second harmonic generation effect among nitrates, *Chem Commun.*, 2017, **53**, 9398–9401.
- 19. L. Wang, H. M. Wang, D. Zhang, D. J. Gao, J. Bi, L. Huang and G. H. Zou, Centrosymmetric RbSnF₂NO₃. noncentrosymmetric Rb₂SbF₃(NO₃)₂, *Inorg. Chem. Front.*, 2021, **8**, 3317–3324.
- 20. L. Wang, F. Yang, X. Y. Zhao, L. Huang, D. J. Gao, J. Bi, X. Wang and G. H. Zou, Rb₃SbF₃(NO₃)₃: an excellent antimony nitrate nonlinear optical material with a strong second harmonic generation response

fabricated by a rational multi-component design, Dalton Trans., 2019, 48, 15144–15150.

- Y. Long, X. H. Dong, H. M. Zeng, Z. Lin and G. H. Zou, Layered Perovskite-like Nitrate Cs₂Pb(NO₃)₂Br₂ as a Multifunctional Optical Material, *Inorg. Chem.*, 2022, **61**, 4184–4192.
 Y. V. Kokunov, D. G. Detkov, Y. E. Gorbunova, M. M. Ershova, Y. N. Mikhailov, and Academician Yu. A. Buslaev, Crystal Structure of (NH₄)₂Sn₂F₄(NO₃)₂: The First Example of Dimeric [Sn₂F₄E₂] Complexes in Tin(II) Fluorides, *Dokl. Chem.*, 2001, **378**, 135–138.
- 22. K. Penneth, B. Holmbeerg, Structure of Mercury Disilver Diiodide Dinitrate Monohydrate, *Acta Cryst*, 1982, **38**, 904–907.
- M. L. Zhou, Y. Yang, Y. W. Guo, Z. S. Lin, J. Y. Yao, Y. C. Wu and C. T. Chen, Hg-Based Infrared Nonlinear Optical Material KHg4Ga5Se12 Exhibits Good Phase-Matchability and Exceptional Second Harmonic Generation Response, *Chem. Mater.*, 2017, 29, 7993–8002.
- M. Yan, Z. D. Sun, W. D. Yao, W. Zhou, W. L. Liu and S. P. Guo, A highly distorted HgS₄ tetrahedroninduced moderate second-harmonic generation response of EuHgGeS₄, *Inorg. Chem. Front.*, 2020, 7, 2451–2458.
- 25. W. H. Xing, N. Z. Wang, C. L. Tang, C. X. Li, Z. S. Lin, J. Y. Yao, W. L. Yin and B. Kang, From AgGaS₂ to AgHgPS₄: vacancy defects and highly distorted HgS₄ tetrahedra double-induced remarkable second-harmonic generation response, *J. Mater. Chem. C*, 2021, **9**, 1062–1068.
- 26. K. Wu, X. Su, S. L. Pan and Z. H. Yang, Synthesis and characterization of mid-infrared transparency compounds: acentric BaHgS₂ and centric Ba₈Hg₄S₅Se₇, *Inorg. Chem.*, 2015, **54**, 2772–2779.
- B. L. Wu, C. L. Hu, F. F. Mao, R. L. Tang and J. G. Mao, Highly Polarizable Hg²⁺ Induced a Strong Second Harmonic Generation Signal and Large Birefringence in LiHgPO₄, *J. Am. Chem. Soc.*, 2019, 141, 10188–10192.
- 28. C. Li, W. L. Yin, P. F. Gong, X. S. Li, M. L. Zhou, A. Mar, Z. S. Lin, J. Y. Yao, Y. C. Wu and C. T. Chen, Trigonal Planar [HgSe₃]⁴⁻ Unit: A New Kind of Basic Functional Group in IR Nonlinear Optical Materials with Large Susceptibility and Physicochemical Stability, J. Am. Chem. Soc., 2016, 138, 6135–6138.
- 29. Y. Huang, Y. Zhang, D. D. Chu, Z. H. Yang, G. M. Li and S. L. Pan, HgB₂S₄: A d¹⁰ Metal Thioborate with Giant Birefringence and Wide Band Gap, *Chem. Mater.*, 2023, **35**, 4556–4563.
- Y. W. Guo, F. Liang, W. L. Yin, Z. Li, X. Y. Luo, Z. S. Lin, J. Y. Yao, A. Mar and Y. C. Wu, BaHgGeSe₄ and SrHgGeSe₄: Two New Hg-Based Infrared Nonlinear Optical Materials, *Chem. Mater.*, 2019, **31**, 3034–3040.
- 31. M. R. Sun and J. Y. Yao, Ba₂HgTe₅: a Hg-based telluride with giant birefringence induced by linear [HgTe₂] units, *Inorg. Chem. Front.*, 2022, **9**, 5024–5031.
- 32. W. Carrillo-Cabrera , F. Menzel , W. Brockner, Crystal structure of copper mercury tetrathiophosphate,

CuHgPS₄, Z. Krist. Cryst. Mater., 1992, 202, 152-153.

- 33. G. Zhang, Y. J. Li, K. Jiang, H. Y. Zeng, T. Liu, X. G. Chen, J. G. Qin, Z. S. Lin, P. Z. Fu, Y. C. Wu and C. T. Chen, A new mixed halide, Cs₂HgI₂Cl₂: molecular engineering for a new nonlinear optical material in the infrared region, *J. Am. Chem. Soc.*, 2012, **134**, 14818–14822.
- X. H. Dong, L. Huang, H. M. Zeng, Z. Lin, K. M. Ok and G. H. Zou, High-Performance Sulfate Optical Materials Exhibiting Giant Second Harmonic Generation and Large Birefringence, *Angew. Chem., Int. Ed.*, 2022, 61, e202116790.
- P. F. Li, C. L. Hu, Y. P. Gong, F. Kong and J. G. Mao, Hg₃(Te₃O₈)(SO₄): a new sulfate tellurite with a novel structure and large birefringence explored from d¹⁰ metal compounds, *Chem. Commun*, 2021, 57, 7039–7042.