Supporting information

Multimodal nanogels combining ZW800-1 as an optical absorber and gadolinium chelates for multispectral optoacoustic tomography (MSOT) and magnetic resonance imaging (MRI)

Camille Gosée,^{a,b} Juliette Moreau,^a Cyril Cadiou,^a Maité Callewaert,^a Céline Henoumont,^b Lionel Larbanoix,^c Michael Molinari,^d Sorina, N. Voicu,^e Christophe Portefaix, ^f Sophie Laurent,^{b, c*} Françoise Chuburu^{a*}

^a University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, Reims, France

^b NMR and Molecular Imaging Laboratory, University of Mons UMons, B-7000 Mons, Belgium.

^c Center for Microscopy and Molecular Imaging, University of Mons, Rue Adrienne Bolland 8, B-6041 Charleroi, Belgium.

^d CBMN CNRS UMR 5248, University of Bordeaux, INP Bordeaux, 33600, Pessac, France.

^e Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania.

^f Radiology Department , CHU de Reims – Hôpital Maison Blanche,
45 Rue Cognacq-Jay, 51092 Reims Cedex, France.

Table of Contents

Fig. S1: a- HR-ESI-MS mass spectrum (negative mode, water), b- 1 H NMR spectrum of ZW800-1 (500 MHz, D₂O/MeOD)

Fig. S2: a- Determination of ZW800-1 molar absorption coefficient $\varepsilon_{767 \text{ nm}}$ in acetate buffer. bdetermination of $k_{ZW800, 787 \text{ nm}}$ ($\lambda_{exc} = 760 \text{ nm}$, $\Delta \lambda_{exc} = \Delta \lambda_{exc} = 5 \text{ nm}$)

Fig.S3: UV-visible spectrum of CS-ZW800 before purification in acetic acid 1%

Fig.S4: UV-visible spectrum of chloro compound 1 in DMSO

Fig. S5: Evolution of the UV-visible spectrum of CS-ZW800 according to purification procedures a- NaOH precipitation, b- dialysis against water, c- steric exclusion chromatography (LH60, elution with acetate buffer), d- cross-flow filtration (eluent: water)

Fig. S6: FTIR spectra of CS, and CS-ZW800

Fig. S7: ¹H NMR spectrum of CS-ZW800 (%mol (ZW800-1/NH₂)_{initial} = 10%, 500 MHz, 318 K, D₂O/DC1 (700/1, v/v))

Table S8: Evaluation of ZW800-1/NH_{2 (CS)} degree of association according to increasing ZW800-1/NH₂ CS initial ratios by a- absorption ($\lambda_{abs} = 767 \text{ nm}$, $\epsilon = 108\ 652 \text{ L}\ \text{mol}^{-1}\ \text{cm}^{-1}$) and b- emission ($\lambda_{abs} = 787 \text{ nm}$, $k_{787} = 3.58 \times 10^8 \text{ L}\ \text{mol}^{-1}$) spectroscopies (mean values calculated from triplicates).

Table S9: (ZW800-1)_{Total}/CS, (ZW800-1)_{Grafted}/(ZW800-1)_{Total} and (ZW800-1)_{Grafted}/CS ratios (mean values calculated from triplicates)

Fig. S10: AFM images of CS-ZW800-TPP/HA and GdDOTACCS-ZW800-TPP/HA NGs after purification

Fig. S11: Viability of RAW 264.7 cells after 24 and 48 hours of exposure to different concentrations of a- CS-ZW800-TPP/HA and b- GdDOTA \subset CS-ZW800-TPP/HA nanogels. Results are calculated as mean \pm SD (n = 3) and expressed as percentage (%) of control

Fig. S12: Fit of the NMRD relaxivity profile of GdDOTACCS-ZW800-TPP/HA nanogels at 37°C (black line = without second sphere, red line = with second sphere – dotted lines; GdDOTA control)

Table S13: Fitted parameters for the NMRD relaxivity profile of GdDOTACCS-ZW800-TPP/HA nanogels

b- determination of $k_{ZW800, 787 \text{ nm}}$ ($\lambda_{exc} = 760 \text{ nm}$, $\Delta \lambda_{exc} = \Delta \lambda_{exc} = 5 \text{ nm}$)

procedures a- NaOH precipitation, b- dialysis against water, c- steric exclusion chromatography (LH60, elution with acetate buffer), d- cross-flow filtration (eluent: water)

Table S8: Evaluation of ZW800-1/NH_{2 (CS)} degree of association according to increasing ZW800-1/NH₂ CS initial ratios by a- absorption ($\lambda_{abs} = 767 \text{ nm}$, $\epsilon = 108\ 652 \text{ L}\ \text{mol}^{-1}\ \text{cm}^{-1}$) and b- emission ($\lambda_{abs} = 787 \text{ nm}$, $k_{787} = 3.58 \times 10^8 \text{ L}\ \text{mol}^{-1}$) spectroscopies (mean values calculated from triplicates)

(ZW800-1/NH ₂) _{initial} [% mol]	a	b
10%	2.85%	2.66%
5%	1.16%	1.24%

Table S9: (ZW800-1)_{Total}/CS, (ZW800-1)_{Grafted}/(ZW800-1)_{Total} and (ZW800-1)_{Grafted}/CS ratios (mean values calculated from triplicates)

(ZW800-1/NH ₂) _{initial} [% mol]	(ZW800-1) _T /CS [% mol] _{average}	(ZW800-1) _G / (ZW800-1) _T [% mol] _{average}	$DS^{ZW800 - 1}_{CS} = ZW800-1_{G}/CS$ [% mol] average
10	2.75	61	1.68
5	1.20	65	0.78

Fig. S10: AFM images of CS-ZW800-TPP/HA and GdDOTACCS-ZW800-TPP/HA NGs after purification

Fig. S11: Viability of RAW 264.7 cells after 24 and 48 hours of exposure to different concentrations of a- CS-ZW800-TPP/HA and b- GdDOTA \subset CS-ZW800-TPP/HA nanogels. Results are calculated as mean \pm SD (n = 3) and expressed as percentage (%) of control

Fig. S12: Fit of the NMRD relaxivity profile of GdDOTA \subset CS-ZW800-TPP/HA nanogels at 37°C (black line = without second sphere, red line = with second sphere – dotted lines; GdDOTA control)

		SBM	SBM + SS	
q(*)		1		
D	m^2s^{-1}	6.5 ×10 ⁻¹⁰		
d(*)	nm	0.36		
r(*)	nm	0.31		
τ _R	ns	0.83	0.84	
τ	ps	33.2	34.3	
τѕο	ps	145	102	
τ _M (*)	ns	100		
q _{ss}			2.4	
$\tau_{ss}(*)$	ps		40	
r _{ss} (*)	nm		0.36	

Table S13: Fitted parameters for the NMRD relaxivity profile of GdDOTACCS-ZW800-TPP/HA nanogels

(*) = parameters fixed during the fit